This article includes a list of general references, but it lacks sufficient corresponding inline citations .(May 2008) |
Carbonate-hosted lead-zinc ore deposits are important and highly valuable concentrations of lead and zinc sulfide ores hosted within carbonate (limestone, marl, dolomite) formations and which share a common genetic origin.
These ore bodies range from 0.5 million tonnes of contained ore, to 20 million tonnes or more, and have a grade of between 4% combined lead and zinc to over 14% combined lead and zinc. These ore bodies tend to be compact, fairly uniform plug-like or pipe-like replacements of their host carbonate sequences and as such can be extremely profitable mines.
This classification of ore deposits is also known as Mississippi Valley Type or MVT ore deposits, after a number of such deposits along the Mississippi River in the United States, where such ores were first recognised; these include the famed Southeast Missouri Lead District of southeastern Missouri, and deposits in northeast Iowa, southwest Wisconsin, and northwest Illinois.
Similarly Irish-type carbonate lead-zinc ores, exemplified by Lisheen Mine in County Tipperary, are formed in similar ways.
The ultimate source of the mineralizing fluid(s) in MVT deposits is unknown. The ore fluids of MVT deposits are typically low temperature (100 °C–150 °C) and have the composition of basinal brines (10–30 wt.% NaCl equivalent) with pH's of 4.5–5 (buffered by host carbonates). This hydrothermal fluid may or may not carry the required sulfur to form sulfide minerals. Mobile hydrocarbons may have played a role in delivering reduced sulfur to certain MVT systems, while methane and other organic matter can potentially reduce sulfate carried by an acidic fluid. The ore fluid is suspected to be derived from clastic red bed sequences (potential metal source) that contain evaporites (potential sulfur source).
Two potential transportation mechanisms for the metal-bearing ore fluid have been proposed. The first involves compaction of sediments in basins with rapid sedimentation. Mineralizing fluids within the basin become trapped within discrete, over-pressured aquifers and escape episodically and rapidly. The second fluid transportation mechanism is topographically-driven gravitational fluid flow. This occurs during uplift that is commonly associated with an orogenic event. One edge of a basin is uplifted during the formation of a foreland fold and thrust belt, and basinal fluids migrate laterally away from the deformation front as the basin is uplifted. Migration of the fluids through deep portions of the basin may result in the acquisition of metals and sulfur contained within the basin.
The trap for carbonate-hosted lead-zinc sulfides is a chemical reaction which occurs as a consequence of concentration of sulfur, often hydrocarbons, and zinc and lead which are absorbed by the hydrocarbons. The hydrocarbons can either leak out of the fault zone or fold hinge, leaving a stockwork of weakly mineralized carbonate-sulfide veins, or can degrade via pyrolysis in place to form bitumens.
Once hydrocarbons are converted to bitumen, their ability to chelate metal ions and sulfur is reduced and results in these elements being expelled into the fluid, which becomes saturated in zinc, lead, iron and sulfur. Sulfide minerals such as galena, sphalerite, marcasite and pyrite thus form.
Commonly MVT deposits form by the combination of hydrocarbon pyrolysis liberating zinc-lead ions and sulfur to form an acidic solution which dissolves the host carbonate formation and replaces it with massive sulfide accumulations. This may also take the morphology of fault-hosted stockworks, massive tabular replacements and so forth.
Porous limestones may form disseminated ores, however most MVT deposits are massive sulfides with knife-like margins between carbonate and sulfide mineralogies.
Ore minerals in carbonate replacement deposits are typically lead sulfide, galena, and zinc sulfide sphalerite. Weathered equivalents form anglesite, cerussite, smithsonite, hydrozincite and secondary galena and sphalerite within the supergene zone.
MVT and Irish type deposits are commonly associated with a 'dolomite front' alteration, which manifests as a yellow-cream wash of dolomite (calcium-magnesium carbonate) within calcite-aragonite assemblages of unaltered carbonate formations.
Most ore bodies are quite sulfidic, and most are very low-iron, with pyrite-marcasite contents typically below 30% of the mass of sulfides. This makes MVT lead-zinc deposits particularly easy to treat from a metallurgical view. Some MVT deposits can, however, be very iron-rich and some sulfide replacement and alteration zones are associated with no lead-zinc at all, resulting in massive accumulations of pyrite-marcasite, which are essentially worthless.
There is sometimes an association with quartz veining and colloform silica, however silicate gangue minerals are often rare.
The importance and synergies between hydrocarbon source-transport-trap 'fairways' and MVT and Irish Type lead-zinc deposits has been known for several decades. Often the prospectivity of particular carbonate formations for lead-zinc deposits of this nature is first identified by core drilling by oil explorers.
This concept of a cogeneration of hydrocarbons and precursor brines by the same process allows many lead-zinc explorers to use hydrocarbon basin models to predict if a carbonate sequence is likely to host MVT or Irish Type mineralization.
Exploration for MVT deposits is relatively complex in theory and straightforward in practise. During the area selection phase, attention must be paid to the nature of the carbonate sequences, especially if there is a 'dolomite front' alteration identified within oil exploration wells, which is commonly associated with lead-zinc mineralisation.
Thereafter, attention must be paid to picking floral facies of any reef carbonates formed from coral reef accumulations. The facies of the carbonate sequence is critical, as this is controlled mostly by faults which are the ultimate target of exploration. A fore-reef/back-reef transition is the 'sweet spot', and thus depending on the age of the carbonate sequence, familiarity with coral palaeontology is considered essential.
Finally, once a basin model of the carbonate sequence is formulated, and the primary basin-margin faults are roughly identified, a gravity survey is often carried out, which is the only geophysical technique which can directly detect MVT deposits. Gravity surveys aim to detect significant accumulations of lead and zinc due to their greater density relative to their surrounding host rocks.
Finally, the 'pointy end' of an exploration programme is to drill each and every one of the gravity targets in sequence, with no favour or prejudice given to the strength or amplitude of any anomaly. It is well known that unsubtle and unsophisticated methods of pattern drilling have found MVT deposits missed by more selective explorers, for instance the Lennard Shelf Deposits in Western Australia were found on the second last hole of an extensive drilling programme.
Similar deposit styles may be encountered in sheared and deformed carbonate belts where zinc-lead sulfides are hosted at the sheared contact of carbonates with siliciclastic sequences. Examples include the Dharwar Basin zinc-lead deposits, India where sulfides are hosted in shears within dolomite sequences.
Sphalerite is a sulfide mineral with the chemical formula (Zn, Fe)S. It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in sedimentary exhalative, Mississippi-Valley type, and volcanogenic massive sulfide deposits. It is found in association with galena, chalcopyrite, pyrite, calcite, dolomite, quartz, rhodochrosite, and fluorite.
Galena, also called lead glance, is the natural mineral form of lead(II) sulfide (PbS). It is the most important ore of lead and an important source of silver.
Skarns or tactites are coarse-grained metamorphic rocks that form by replacement of carbonate-bearing rocks during regional or contact metamorphism and metasomatism. Skarns may form by metamorphic recrystallization of impure carbonate protoliths, bimetasomatic reaction of different lithologies, and infiltration metasomatism by magmatic-hydrothermal fluids. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or shear zones that commonly intrude into a carbonate layer composed of either dolomite or limestone. Skarns can form by regional or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from a variety of sources; magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on both the original composition of the hydrothermal fluid and the original composition of the protolith.
The Pine Point Mine is located on the south shore of Great Slave Lake between Hay River to the west and Fort Resolution to the east, in the Northwest Territories of Canada. It produced lead and zinc ores from a Mississippi Valley Type deposit between 1964 and 1988. Most of the mining was done by open-pit methods. The town of Pine Point was built by the mining company, Cominco, and when the mine closed the town was abandoned and demolished.
Volcanogenic massive sulfide ore deposits, also known as VMS ore deposits, are a type of metal sulfide ore deposit, mainly copper-zinc which are associated with and produced by volcanic-associated hydrothermal events in submarine environments.
The Southeast Missouri Lead District, commonly called the Lead Belt, is a lead mining district in the southeastern part of Missouri. Counties in the Lead Belt include Saint Francois, Crawford, Dent, Iron, Madison, Reynolds, and Washington. This mining district is the most important and critical lead producer in the United States.
Various theories of ore genesis explain how the various types of mineral deposits form within Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.
Sedimentary exhalative deposits are zinc-lead deposits originally interpreted to have been formed by discharge of metal-bearing basinal fluids onto the seafloor resulting in the precipitation of mainly stratiform ore, often with thin laminations of sulfide minerals. SEDEX deposits are hosted largely by clastic rocks deposited in intracontinental rifts or failed rift basins and passive continental margins. Since these ore deposits frequently form massive sulfide lenses, they are also named sediment-hosted massive sulfide (SHMS) deposits, as opposed to volcanic-hosted massive sulfide (VHMS) deposits. The sedimentary appearance of the thin laminations led to early interpretations that the deposits formed exclusively or mainly by exhalative processes onto the seafloor, hence the term SEDEX. However, recent study of numerous deposits indicates that shallow subsurface replacement is also an important process, in several deposits the predominant one, with only local if any exhalations onto the seafloor. For this reason, some authors prefer the term clastic-dominated zinc-lead deposits. As used today, therefore, the term SEDEX is not to be taken to mean that hydrothermal fluids actually vented into the overlying water column, although this may have occurred in some cases.
In ore deposit geology, supergene processes or enrichment are those that occur relatively near the surface as opposed to deep hypogene processes. Supergene processes include the predominance of meteoric water circulation (i.e. water derived from precipitation) with concomitant oxidation and chemical weathering. The descending meteoric waters oxidize the primary (hypogene) sulfide ore minerals and redistribute the metallic ore elements. Supergene enrichment occurs at the base of the oxidized portion of an ore deposit. Metals that have been leached from the oxidized ore are carried downward by percolating groundwater, and react with hypogene sulfides at the supergene-hypogene boundary. The reaction produces secondary sulfides with metal contents higher than those of the primary ore. This is particularly noted in copper ore deposits where the copper sulfide minerals chalcocite (Cu2S), covellite (CuS), digenite (Cu18S10), and djurleite (Cu31S16) are deposited by the descending surface waters.
A polymetallic replacement deposit, also known as carbonate replacement deposit or high-temperature carbonate-hosted Ag-Pb-Zn deposit, is an orebody of metallic minerals formed by the replacement of sedimentary, usually carbonate rock, by metal-bearing solutions in the vicinity of igneous intrusions. When the ore forms a blanketlike body along the bedding plane of the rock, it is commonly called a manto ore deposit. Other ore geometries are chimneys and veins. Polymetallic replacements/mantos are often stratiform wall-rock replacement orebodies distal to porphyry copper deposits, or porphyry molybdenum deposits. The term manto is derived from the Spanish word manto, meaning "mantle" or "cloak".
Seafloor massive sulfide deposits or SMS deposits, are modern equivalents of ancient volcanogenic massive sulfide ore deposits or VMS deposits. The term has been coined by mineral explorers to differentiate the modern deposit from the ancient.
The Broken Hill Ore Deposit is located underneath Broken Hill in western New South Wales, Australia, and is the namesake for the town. It is arguably the world's richest and largest zinc-lead ore deposit.
Carlin–type gold deposits are sediment-hosted disseminated gold deposits. These deposits are characterized by invisible gold in arsenic rich pyrite and arsenopyrite. This dissolved kind of gold is called "invisible gold", as it can only be found through chemical analysis. The deposit is named after the Carlin mine, the first large deposit of this type discovered in the Carlin Trend, Nevada.
Rampura Agucha is a zinc and lead mine located on a massive sulfide deposit in the Bhilwara district of Rajasthan, India. Rampura Agucha is located 220 km (140 mi) from Jaipur. It is north of Bhilwara, and northwest of Shahpura. Rampura Agucha is 10 km (6.2 mi) southeast of Gulabpura on NH 79. The mine is owned by Hindustan Zinc Limited (HZL), and has the world's largest deposits of zinc and lead.
The Cathedral Formation is a stratigraphic unit in the southern Canadian Rockies of Alberta and British Columbia, on the western edge of the Western Canada Sedimentary Basin. It is a thick sequence of carbonate rocks of Middle Cambrian age. It was named for Cathedral Mountain in Yoho National Park by Charles Doolittle Walcott, the discoverer of the Burgess shale fossils.
In ore deposit geology, hypogene processes occur deep below the Earth's surface, and tend to form deposits of primary minerals, as opposed to supergene processes that occur at or near the surface, and tend to form secondary minerals.
The Shady Dolomite is a geologic formation composed of marine sedimentary rocks of early Cambrian age. It outcrops along the eastern margin of the Blue Ridge province in the southeastern United States and can be found in outcrops in the states of Alabama, Georgia, Tennessee, North Carolina, and Virginia. It can also be found in the subsurface of Kentucky, Ohio, and West Virginia. The Shady is predominantly composed of dolomite and limestone with lesser amounts of mudrock. It contains fossils of trilobites, archaeocyathids, algae, brachiopods, and echinoderms, along with the enigmatic fossil Salterella. The Shady Dolomite was first described by Arthur Keith in 1903 and was named for exposures in the Shady Valley of Johnson County in the state of Tennessee. Near Austinville, Virginia, the Shady hosts ore deposits that have been mined extensively for lead and zinc ore.
Hydrothermal mineral deposits are accumulations of valuable minerals which formed from hot waters circulating in Earth's crust through fractures. They eventually produce metallic-rich fluids concentrated in a selected volume of rock, which become supersaturated and then precipitate ore minerals. In some occurrences, minerals can be extracted for a profit by mining. Discovery of mineral deposits consumes considerable time and resources and only about one in every one thousand prospects explored by companies are eventually developed into a mine. A mineral deposit is any geologically significant concentration of an economically useful rock or mineral present in a specified area. The presence of a known but unexploited mineral deposit implies a lack of evidence for profitable extraction.
Massive sulfide deposits are ore deposits that have significant stratiform ore bodies consisting mainly of sulfide minerals. Most massive sulfide ore deposits have other portions that are not massive, including stringer or feeder zones beneath the massive parts that mostly consist of crosscutting veins and veinlets of sulfides in a matrix of pervasively altered host rock and gangue.
Polymetallic ores or multimetal ores are complex ores containing a number of chemical elements, among which the most important are lead and zinc. In addition, polymetallic ores can contain copper, gold, silver, cadmium, sometimes bismuth, tin, indium and gallium. The main minerals that form polymetallic ores are galena, sphalerite, to a lesser extent pyrite, chalcopyrite, arsenopyrite, cassiterite. They are most commonly formed from sulfides but also include oxides.