Hydrozincite

Last updated
Hydrozincite
Hydrozincite-Smithsonite-210865.jpg
General
Category Carbonate mineral
Formula
(repeating unit)
Zn5(CO3)2(OH)6
IMA symbol Hznc [1]
Strunz classification 5.BA.15
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group C2/m
Unit cell a = 13.58 Å, b = 6.28 Å,
c = 5.41 Å; β = 95.51°, Z = 2
Identification
ColorWhite to grey, stained pale pink, or pale yellow or brown; colourless in transmitted light.
Crystal habit Lathlike or bladed crystals uncommon, in fibrous, stalactitic, reniform, pisolitic aggregates; also earthy, chalky, massive
Twinning Contact twinning on {100}
Cleavage Perfect on {100}
Fracture Irregular/uneven
Tenacity Very brittle
Mohs scale hardness2–2+12
Luster Silky, pearly, dull, earthy
Streak White
Diaphaneity Transparent, translucent
Specific gravity 3.5–4
Optical propertiesBiaxial (−)
Refractive index nα = 1.630 nβ = 1.642 nγ = 1.750
Birefringence δ = 0.120
2V angle Measured: 40°, calculated: 40°
Dispersion relatively strong
Ultraviolet fluorescence Fluoresces pale blue to lilac under UV
Solubility Readily soluble in acids.
References [2] [3] [4]

Hydrozincite, also known as zinc bloom or marionite, is a white carbonate mineral consisting of Zn 5(CO3)2(OH)6. It is usually found in massive rather than crystalline form.

It occurs as an oxidation product of zinc ores and as post mine incrustations. It occurs associated with smithsonite, hemimorphite, willemite, cerussite, aurichalcite, calcite and limonite. [2]

It was first described in 1853 for an occurrence in Bad Bleiberg, Carinthia, Austria and named for its chemical content. [3]

Related Research Articles

<span class="mw-page-title-main">Germanite</span> Rare copper iron germanium sulfide mineral

Germanite is a rare copper iron germanium sulfide mineral, Cu26Fe4Ge4S32. It was first discovered in 1922, and named for its germanium content. It is only a minor source of this important semiconductor element, which is mainly derived from the processing of the zinc sulfide mineral sphalerite. Germanite contains gallium, zinc, molybdenum, arsenic, and vanadium as impurities.

<span class="mw-page-title-main">Staurolite</span> Reddish brown to black nesosilicate mineral

Staurolite is a reddish brown to black, mostly opaque, nesosilicate mineral with a white streak. It crystallizes in the monoclinic crystal system, has a Mohs hardness of 7 to 7.5 and the chemical formula: Fe2+2Al9O6(SiO4)4(O,OH)2. Magnesium, zinc and manganese substitute in the iron site and trivalent iron can substitute for aluminium.

<span class="mw-page-title-main">Smithsonite</span> Mineral of zinc carbonate

Smithsonite, also known as zinc spar, is the mineral form of zinc carbonate (ZnCO3). Historically, smithsonite was identified with hemimorphite before it was realized that they were two different minerals. The two minerals are very similar in appearance and the term calamine has been used for both, leading to some confusion. The distinct mineral smithsonite was named in 1832 by François Sulpice Beudant in honor of English chemist and mineralogist James Smithson (c. 1765–1829), who first identified the mineral in 1802.

<span class="mw-page-title-main">Aurichalcite</span> Basic carbonate of zinc and copper

Aurichalcite is a carbonate mineral, usually found as a secondary mineral in copper and zinc deposits. Its chemical formula is (Zn,Cu)5(CO3)2(OH)6. The zinc to copper ratio is about 5:4. Copper (Cu2+) gives aurichalcite its green-blue colors.

<span class="mw-page-title-main">Creedite</span>

Creedite is a calcium aluminium sulfate fluoro hydroxide mineral with formula: Ca3Al2SO4(F,OH)10·2(H2O). Creedite forms colorless to white to purple monoclinic prismatic crystals. It often occurs as acicular radiating sprays of fine prisms. It is translucent to transparent with indices of refraction of nα = 1.461 nβ = 1.478 nγ = 1.485. It has a Mohs hardness of 3.5 to 4 and a specific gravity of 2.7.

<span class="mw-page-title-main">Erythrite</span> Hydrated cobalt arsenate mineral

Erythrite, also known as red cobalt, is a secondary hydrated cobalt arsenate mineral with the formula Co
3
(AsO
4
)
2
•8H
2
O
. Erythrite and annabergite, chemical formula Ni
3
(AsO
4
)
2
•8H
2
O
, or nickel arsenate form a complete series with the general formula (Co,Ni)
3
(AsO
4
)
2
•8H
2
O
.

<span class="mw-page-title-main">Rhodonite</span> Single chain manganese inosilicate (MnSiO3)

Rhodonite is a manganese inosilicate, with the formula (Mn, Fe, Mg, Ca)SiO3, and member of the pyroxenoid group of minerals, crystallizing in the triclinic system. It commonly occurs as cleavable to compact masses with a rose-red color (its name comes from Ancient Greek ῥόδον (rhódon) 'rose'), often tending to brown due to surface oxidation. The rose-red hue is caused by the manganese cation (Mn2+).

<span class="mw-page-title-main">Adamite</span> Zinc arsenate hydroxide mineral

Adamite is a zinc arsenate hydroxide mineral, Zn2AsO4OH. It is a mineral that typically occurs in the oxidized or weathered zone above zinc ore occurrences. Pure adamite is colorless, but usually it possess yellow color due to Fe compounds admixture. Tints of green also occur and are connected with copper substitutions in the mineral structure. Olivenite is a copper arsenate that is isostructural with adamite and there is considerable substitution between zinc and copper resulting in an intermediate called cuproadamite. Zincolivenite is a recently discovered mineral being an intermediate mineral with formula CuZn(AsO4)(OH). Manganese, cobalt, and nickel also substitute in the structure. An analogous zinc phosphate, tarbuttite, is known.

<span class="mw-page-title-main">Willemite</span> Nesosilicate mineral

Willemite is a zinc silicate mineral and a minor ore of zinc. It is highly fluorescent (green) under shortwave ultraviolet light. It occurs in a variety of colors in daylight, in fibrous masses and apple-green gemmy masses. Troostite is a variant in which part of the zinc is partly replaced by manganese, it occurs in solid brown masses.

<span class="mw-page-title-main">Stannite</span> Mineral

Stannite is a mineral, a sulfide of copper, iron, and tin, in the category of thiostannates.

<span class="mw-page-title-main">Sauconite</span> Trioctahedral (Zn2+) smectite, phyllosilicate mineral

Sauconite is a complex phyllosilicate mineral of the smectite clay group, formula Na0.3Zn3(SiAl)4O10(OH)2·4H2O. It forms soft earthy bluish white to red-brown monoclinic crystals typically massive to micaceous in habit. It has a Mohs hardness of 1 to 2 and a specific gravity of 2.45. Optically it is biaxial positive with refractive index values of nα = 1.550 – 1.580, nβ = 1.590 – 1.620 and nγ = 1.590 – 1.620. It is found in vugs and seams in the oxidized zones of zinc and copper deposits. It occurs in association with hemimorphite, smithsonite, chrysocolla, coronadite and various iron oxides.

<span class="mw-page-title-main">Fraipontite</span> Zinc aluminium silicate mineral

Fraipontite is a zinc aluminium silicate mineral with a formula of (Zn,Al)3(Si,Al)2O5(OH)4.

<span class="mw-page-title-main">Rosasite</span> Mineral of copper zinc carbonate

Rosasite is a carbonate mineral with minor potential for use as a zinc and copper ore. Chemically, it is a copper zinc carbonate hydroxide with a copper to zinc ratio of 3:2, occurring in the secondary oxidation zone of copper-zinc deposits. It was originally discovered in 1908 in the Rosas mine in Sardinia, Italy, and is named after the location. Fibrous blue-green rosasite crystals are usually found in globular aggregates, often associated with red limonite and other colorful minerals. It is very similar to aurichalcite, but can be distinguished by its superior hardness.

Reinerite is a rare arsenite (arsenate(III)) mineral with chemical formula Zn3(AsO3)2. It crystallizes in the orthorhombic crystal system.

<span class="mw-page-title-main">Ashburtonite</span> Rare lead copper silicate-bicarbonate mineral

Ashburtonite is a rare lead copper silicate-bicarbonate mineral with formula: HPb4Cu2+4Si4O12(HCO3)4(OH)4Cl.

<span class="mw-page-title-main">Plattnerite</span>

Plattnerite is an oxide mineral and is the beta crystalline form of lead dioxide (β-PbO2), scrutinyite being the other, alpha form. It was first reported in 1845 and named after German mineralogist Karl Friedrich Plattner. Plattnerite forms bundles of dark needle-like crystals on various minerals; the crystals are hard and brittle and have tetragonal symmetry.

<span class="mw-page-title-main">Fluoborite</span>

Fluoborite has a chemical formula of Mg3(BO3)(F,OH)3. Its name comes from its main chemical components, fluorine and boron. It was first described in 1926.

<span class="mw-page-title-main">Tarbuttite</span> Phosphate mineral

Tarbuttite is a rare phosphate mineral with formula Zn2(PO4)(OH). It was discovered in 1907 in what is now Zambia and named for Percy Coventry Tarbutt.

<span class="mw-page-title-main">Ianbruceite</span> Rare hydrated zinc arsenate

Ianbruceite is a rare hydrated zinc arsenate with the formula [Zn2(OH)(H2O)(AsO4)](H2O)2; material from the Driggith mine has traces of cobalt. It was first discovered at Tsumeb, approved by the International Mineralogical Association as a new mineral species in 2011, reference IMA2011-49, and named for Ian Bruce, who founded "Crystal Classics" in the early 1990s, and was heavily involved in attempts to reopen the famous Tsumeb mine for specimen mining.
In 2013 new occurrences of ianbruceite were reported from the neighbouring Driggith and Potts Gill mines on High Pike in the Caldbeck Fells, Cumbria, England. Here the mineral is probably a post-mining product. Caldbeck Fells and Tsumeb are the only reported localities for ianbruceite to date (May 2013).

<span class="mw-page-title-main">Brianyoungite</span> Secondary zinc carbonate mineral

Brianyoungite is a secondary zinc carbonate mineral. The Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA) classifies it as a carbonate with the formula Zn3(CO3)(OH)4, but sulfate groups SO4 also occupy the carbonate CO3 positions, in the ratio of about one sulfate to three carbonates, so other sources give the formula as Zn3(CO3,SO4)(OH)4, and Gaines et al. classify the mineral as a compound carbonate. It is similar in appearance to hydrozincite, another zinc carbonate. It was discovered in 1991 and designated IMA1991-053. In 1993 it was named "brianyoungite" after Brian Young (born 1947), a field geologist with the British Geological Survey, who provided the first specimens.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 Handbook of Mineralogy
  3. 1 2 Mindat
  4. Webmineral data