Bioaccumulation

Last updated

Bioaccumulation is the gradual accumulation of substances, such as pesticides or other chemicals, in an organism. [1] Bioaccumulation occurs when an organism absorbs a substance faster than it can be lost or eliminated by catabolism and excretion. Thus, the longer the biological half-life of a toxic substance, the greater the risk of chronic poisoning, even if environmental levels of the toxin are not very high. [2] Bioaccumulation, for example in fish, can be predicted by models. [3] [4] Hypothesis for molecular size cutoff criteria for use as bioaccumulation potential indicators are not supported by data. [5] Biotransformation can strongly modify bioaccumulation of chemicals in an organism. [6]

Contents

Toxicity induced by metals is associated with bioaccumulation and biomagnification. [7] Storage or uptake of a metal faster than it is metabolized and excreted leads to the accumulation of that metal. [8] The presence of various chemicals and harmful substances in the environment can be analyzed and assessed with a proper knowledge on bioaccumulation helping with chemical control and usage. [9]

An organism can take up chemicals by breathing, absorbing through skin or swallowing. [7] When the concentration of a chemical is higher within the organism compared to its surroundings (air or water), it is referred to as bioconcentration. [1] Biomagnification is another process related to bioaccumulation as the concentration of the chemical or metal increases as it moves up from one trophic level to another. [1] Naturally, the process of bioaccumulation is necessary for an organism to grow and develop; however, the accumulation of harmful substances can also occur. [7]

Examples

Terrestrial examples

An example of poisoning in the workplace can be seen from the phrase "mad as a hatter" (18th and 19th century England). Mercury was used in stiffening the felt that was used to make hats. This forms organic species such as methylmercury, which is lipid-soluble (fat-soluble), and tends to accumulate in the brain, resulting in mercury poisoning. Other lipid-soluble poisons include tetraethyllead compounds (the lead in leaded petrol), and DDT. These compounds are stored in the body fat, and when the fatty tissues are used for energy, the compounds are released and cause acute poisoning.[ citation needed ]

Strontium-90, part of the fallout from atomic bombs, is chemically similar enough to calcium that it is taken up in forming bones, where its radiation can cause damage for a long time. [10] [ citation needed ]

Some animal species use bioaccumulation as a mode of defense: by consuming toxic plants or animal prey, an animal may accumulate the toxin, which then presents a deterrent to a potential predator. One example is the tobacco hornworm, which concentrates nicotine to a toxic level in its body as it consumes tobacco plants. Poisoning of small consumers can be passed along the food chain to affect the consumers later in the chain.

Other compounds that are not normally considered toxic can be accumulated to toxic levels in organisms. The classic example is vitamin A, which becomes concentrated in livers of carnivores, e.g. polar bears: as a pure carnivore that feeds on other carnivores (seals), they accumulate extremely large amounts of vitamin A in their livers. It was known by the native peoples of the Arctic that the livers of carnivores should not be eaten, but Arctic explorers have suffered hypervitaminosis A from eating the livers of bears; and there has been at least one example of similar poisoning of Antarctic explorers eating husky dog livers. One notable example of this is the expedition of Sir Douglas Mawson, whose exploration companion died from eating the liver of one of their dogs.

Aquatic examples

Coastal fish (such as the smooth toadfish) and seabirds (such as the Atlantic puffin) are often monitored for heavy metal bioaccumulation. Methylmercury gets into freshwater systems through industrial emissions and rain. As its concentration increases up the food web, it can reach dangerous levels for both fish and the humans who rely on fish as a food source. [11]

Fish are typically assessed for bioaccumulation when they have been exposed to chemicals that are in their aqueous phases. [12] Commonly tested fish species include the common carp, rainbow trout, and bluegill sunfish. [12] Generally, fish are exposed to bioconcentration and bioaccumulation of organic chemicals in the environment through lipid layer uptake of water-borne chemicals. [12] In other cases, the fish are exposed through ingestion/digestion of substances or organisms in the aquatic environment which contain the harmful chemicals. [12]

Naturally produced toxins can also bioaccumulate. The marine algal blooms known as "red tides" can result in local filter-feeding organisms such as mussels and oysters becoming toxic; coral reef fish can be responsible for the poisoning known as ciguatera when they accumulate a toxin called ciguatoxin from reef algae. [13] In some eutrophic aquatic systems, biodilution can occur. This is a decrease in a contaminant with an increase in trophic level, due to higher concentrations of algae and bacteria diluting the concentration of the pollutant. [14] [15]

Wetland acidification can raise the chemical or metal concentrations, which leads to an increased bioavailability in marine plants and freshwater biota. [16] Plants situated there which includes both rooted and submerged plants can be influenced by the bioavailability of metals. [16]

Studies of turtles as model species

Bioaccumulation in turtles occurs when synthetic organic contaminants (i.e., PFAS), heavy metals, or high levels of trace elements enter a singular organism, potentially affecting their health. Although there are ongoing studies of bioaccumulation in turtles, factors like pollution, climate change, and shifting landscape can affect the amounts of these toxins in the ecosystem. [17]

The most common elements studied in turtles are mercury, cadmium, argon [ dubious ], and selenium. Heavy metals are released into rivers, streams, lakes, oceans, and other aquatic environments, and the plants that live in these environments will absorb the metals. Since the levels of trace elements are high in aquatic ecosystems, turtles will naturally consume various trace elements throughout various aquatic environments by eating plants and sediments. [18] Once these substances enter the bloodstream and muscle tissue, they will increase in concentration and will become toxic to the turtles, perhaps causing metabolic, endocrine system, and reproductive failure. [19]

Some marine turtles are used as experimental subjects to analyze bioaccumulation because of their shoreline habitats, which facilitate the collection of blood samples and other data. [18] The turtle species are very diverse and contribute greatly to biodiversity, so many researchers find it valuable to collect data from various species. Freshwater turtles are another model species for investigating bioaccumulation. [20] Due to their relatively limited home-range freshwater turtles can be associated with a particular catchment and its chemical contaminant profile.

Developmental effects of turtles

Toxic concentrations in turtle eggs may damage the developmental process of the turtle. For example, in the Australian freshwater short-neck turtle ( Emydura macquarii macquarii ), environmental PFAS concentrations were bioaccumulated by the mother and then offloaded into their eggs that impacted developmental metabolic processes and fat stores. [21] Furthermore, there is evidence PFAS impacted the gut microbiome in exposed turtles. [22]

In terms of toxic levels of heavy metals, it was observed to decrease egg-hatching rates in the Amazon River turtle, Podocnemis expansa . [19] In this particular turtle egg, the heavy metals reduce the fat in the eggs and change how water is filtered throughout the embryo; this can affect the survival rate of the turtle egg. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Toxin</span> Naturally occurring organic poison

A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919) and is derived from the word "toxic".

<span class="mw-page-title-main">Algal bloom</span> Spread of planktonic algae in water

An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in freshwater or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. The term algae encompasses many types of aquatic photosynthetic organisms, both macroscopic multicellular organisms like seaweed and microscopic unicellular organisms like cyanobacteria. Algal bloom commonly refers to the rapid growth of microscopic unicellular algae, not macroscopic algae. An example of a macroscopic algal bloom is a kelp forest.

<span class="mw-page-title-main">Toxicity</span> Degree of harmfulness of substances

Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell (cytotoxicity) or an organ such as the liver (hepatotoxicity). Sometimes the word is more or less synonymous with poisoning in everyday usage.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, that has a negative impact on their uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Aquatic toxicology</span> Study of manufactured products on aquatic organisms

Aquatic toxicology is the study of the effects of manufactured chemicals and other anthropogenic and natural materials and activities on aquatic organisms at various levels of organization, from subcellular through individual organisms to communities and ecosystems. Aquatic toxicology is a multidisciplinary field which integrates toxicology, aquatic ecology and aquatic chemistry.

<span class="mw-page-title-main">Cyanotoxin</span> Toxin produced by cyanobacteria

Cyanotoxins are toxins produced by cyanobacteria. Cyanobacteria are found almost everywhere, but particularly in lakes and in the ocean where, under high concentration of phosphorus conditions, they reproduce exponentially to form blooms. Blooming cyanobacteria can produce cyanotoxins in such concentrations that they can poison and even kill animals and humans. Cyanotoxins can also accumulate in other animals such as fish and shellfish, and cause poisonings such as shellfish poisoning.

<span class="mw-page-title-main">Methylmercury</span> Toxic chemical compound

Methylmercury (sometimes methyl mercury) is an organometallic cation with the formula [CH3Hg]+. It is the simplest organomercury compound. Methylmercury is extremely toxic, and its derivatives are the major source of organic mercury for humans. It is a bioaccumulative environmental toxicant with a 50-day half-life.

<span class="mw-page-title-main">Persistent organic pollutant</span> Organic compounds that are resistant to environmental degradation

Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic and adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.

<span class="mw-page-title-main">Biomagnification</span> Process of progressive accumulation in food chain

Biomagnification, also known as bioamplification or biological magnification, is the increase in concentration of a substance, e.g a pesticide, in the tissues of organisms at successively higher levels in a food chain. This increase can occur as a result of:

<span class="mw-page-title-main">Ecotoxicology</span>

Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the population, community, ecosystem, and biosphere levels. Ecotoxicology is a multidisciplinary field, which integrates toxicology and ecology.

<span class="mw-page-title-main">Endrin</span> Chemical compound

Endrin is an organochlorine compound with the chemical formula C12H8Cl6O that was first produced in 1950 by Shell and Velsicol Chemical Corporation. It was primarily used as an insecticide, as well as a rodenticide and piscicide. It is a colourless, odorless solid, although commercial samples are often off-white. Endrin was manufactured as an emulsifiable solution known commercially as Endrex. The compound became infamous as a persistent organic pollutant and for this reason it is banned in many countries.

<span class="mw-page-title-main">Tributyltin</span> Group of organotin compounds

Tributyltin (TBT) is an umbrella term for a class of organotin compounds which contain the (C4H9)3Sn group, with a prominent example being tributyltin oxide. For 40 years TBT was used as a biocide in anti-fouling paint, commonly known as bottom paint, applied to the hulls of oceangoing vessels. Bottom paint improves ship performance and durability as it reduces the rate of biofouling, the growth of organisms on the ship's hull. The TBT slowly leaches out into the marine environment where it is highly toxic toward nontarget organisms. TBT toxicity can lead to biomagnification or bioaccumulation within such nontarget organisms like invertebrates, vertebrates, and a variety of mammals. TBT is also an obesogen. After it led to collapse of local populations of organisms, TBT was banned.

<span class="mw-page-title-main">Triclocarban</span> Antimicrobial agent

Triclocarban is an antibacterial chemical once common in, but now phased out of, personal care products like soaps and lotions. It was originally developed for the medical field. Although the mode of action is unknown, TCC can be effective in fighting infections by targeting the growth of bacteria such as Staphylococcus aureus. Additional research seeks to understand its potential for causing antibacterial resistance and its effects on organismal and environmental health.

<span class="mw-page-title-main">Environmental toxicology</span>

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

<span class="mw-page-title-main">Mercury in fish</span>

The presence of mercury in fish is a health concern for people who eat them, especially for women who are or may become pregnant, nursing mothers, and young children. Fish and shellfish concentrate mercury in their bodies, often in the form of methylmercury, a highly toxic organomercury compound. This element is known to bioaccumulate in humans, so bioaccumulation in seafood carries over into human populations, where it can result in mercury poisoning. Mercury is dangerous to both natural ecosystems and humans because it is a metal known to be highly toxic, especially due to its neurotoxic ability to damage the central nervous system.

<span class="mw-page-title-main">Per- and polyfluoroalkyl substances</span> Class of perfluorinated chemical compounds

Per- and polyfluoroalkyl substances are a group of synthetic organofluorine chemical compounds that have multiple fluorine atoms attached to an alkyl chain. The PubChem database lists more than 6 million unique compounds in this group. PFASs started being used in the mid-20th century to make fluoropolymer coatings and products that resist heat, oil, stains, grease, and water. They are used in a variety of products including waterproof clothing, furniture, adhesives, food packaging, heat-resistant non-stick cooking surfaces, and the insulation of electrical wire. They have played a key economic role for companies such as DuPont, 3M, and W. L. Gore & Associates that use them to produce widely known materials such as Teflon or Gore-Tex.

Biodilution, sometimes referred to as bloom dilution, is the decrease in concentration of an element or pollutant with an increase in trophic level. This effect is primarily observed during algal blooms whereby an increase in algal biomass reduces the concentration of pollutants in organisms higher up in the food chain, like zooplankton or daphnia.

In aquatic toxicology, bioconcentration is the accumulation of a water-borne chemical substance in an organism exposed to the water.

Persistent, bioaccumulative and toxic substances (PBTs) are a class of compounds that have high resistance to degradation from abiotic and biotic factors, high mobility in the environment and high toxicity. Because of these factors PBTs have been observed to have a high order of bioaccumulation and biomagnification, very long retention times in various media, and widespread distribution across the globe. Most PBTs in the environment are either created through industry or are unintentional byproducts.

Tissue residue is the concentration of a chemical or compound in an organism's tissue or in a portion of an organism's tissue. Tissue residue is used in aquatic toxicology to help determine the fate of chemicals in aquatic systems, bioaccumulation of a substance, or bioavailability of a substance, account for multiple routes of exposure, and address an organism's exposure to chemical mixtures. A tissue residue approach to toxicity testing is considered a more direct and less variable measure of chemical exposure and is less dependent on external environmental factors than measuring the concentration of a chemical in the exposure media.

References

  1. 1 2 3 Alexander (1999). "Bioaccumulation, bioconcentration, biomagnification". Environmental Geology. Encyclopedia of Earth Science. pp. 43–44. doi:10.1007/1-4020-4494-1_31. ISBN   978-0-412-74050-3.
  2. Bryan, G. W.; Waldichuk, M.; Pentreath, R. J.; Darracott, Ann (1979). "Bioaccumulation of Marine Pollutants [and Discussion]". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 286 (1015): 483–505. Bibcode:1979RSPTB.286..504W. JSTOR   2418066.
  3. Stadnicka, Julita; Schirmer, Kristin; Ashauer, Roman (2012). "Predicting Concentrations of Organic Chemicals in Fish by Using Toxicokinetic Models". Environmental Science & Technology. 46 (6): 3273–3280. Bibcode:2012EnST...46.3273S. doi:10.1021/es2043728. PMC   3308199 . PMID   22324398.
  4. Otero-Muras, I.; Franco-Uría, A.; Alonso, A.A.; Balsa-Canto, E. (2010). "Dynamic multi-compartmental modelling of metal bioaccumulation in fish: Identifiability implications". Environmental Modelling & Software. 25 (3): 344–353. Bibcode:2010EnvMS..25..344O. doi:10.1016/j.envsoft.2009.08.009.
  5. Arnot, Jon A.; Arnot, Michelle; MacKay, Donald; Couillard, Yves; MacDonald, Drew; Bonnell, Mark; Doyle, Pat (2007). "Molecular Size Cut-Off Criteria for Screening Bioaccumulation Potential: Fact or Fiction?". Integrated Environmental Assessment and Management. 6 (2009): 210–224. doi: 10.1897/IEAM_2009-051.1 . PMID   19919169.
  6. Ashauer, Roman; Hintermeister, Anita; o'Connor, Isabel; Elumelu, Maline; Hollender, Juliane; Escher, Beate I. (2012). "Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in Gammarus pulex". Environmental Science & Technology. 46 (6): 3498–3508. Bibcode:2012EnST...46.3498A. doi:10.1021/es204611h. PMC   3308200 . PMID   22321051.
  7. 1 2 3 Blowes, D. W.; Ptacek, C. J.; Jambor, J. L.; Weisener, C. G. (1 January 2003), Holland, Heinrich D.; Turekian, Karl K. (eds.), "9.05 - The Geochemistry of Acid Mine Drainage", Treatise on Geochemistry, Oxford: Pergamon, pp. 149–204, doi:10.1016/b0-08-043751-6/09137-4, ISBN   978-0-08-043751-4 , retrieved 17 February 2021
  8. Gaion A, Sartori D, Scuderi A, Fattorini D (2014). "Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments". Environmental Science and Pollution Research. 21 (9): 5952–5959. Bibcode:2014ESPR...21.5952G. doi:10.1007/s11356-014-2538-z. PMID   24458939. S2CID   12568097.
  9. Philip Wexler, ed. (2014). Encyclopedia of toxicology (Third ed.). London. ISBN   978-1-78402-845-9. OCLC   878141491.{{cite book}}: CS1 maint: location missing publisher (link)
  10. Martell, E. A. (May 1959). "Atmospheric Aspects of Strontium-90 Fallout: Fallout evidence indicates short stratospheric holdup time for middle-latitude atomic tests". Science. 129 (3357): 1197–1206. doi:10.1126/science.129.3357.1197. ISSN   0036-8075. PMID   13658944.
  11. "Mercury: What it does to humans and what humans need to do about it". IISD Experimental Lakes Area. 23 September 2017. Retrieved 6 July 2020.
  12. 1 2 3 4 Alan., Hoke, Robert. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals : current status and future possibilities. OCLC   942770368.{{cite book}}: CS1 maint: multiple names: authors list (link)
  13. Estevez, Pablo; Sibat, Manoella; Leão-Martins, José Manuel; Reis Costa, Pedro; Gago-Martínez, Ana; Hess, Philipp (21 April 2020). "Liquid Chromatography Coupled to High-Resolution Mass Spectrometry for the Confirmation of Caribbean Ciguatoxin-1 as the Main Toxin Responsible for Ciguatera Poisoning Caused by Fish from European Atlantic Coasts". Toxins. 12 (4): 267. doi: 10.3390/toxins12040267 . ISSN   2072-6651. PMC   7232264 . PMID   32326183.
  14. Deines, Peter; Bodelier, Paul L. E.; Eller, Gundula (May 2007). "Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems". Environmental Microbiology. 9 (5): 1126–1134. Bibcode:2007EnvMi...9.1126D. doi:10.1111/j.1462-2920.2006.01235.x. ISSN   1462-2912. PMID   17472629.
  15. Lin, Han-Yang; Costello, Mark John (7 September 2023). "Body size and trophic level increase with latitude, and decrease in the deep-sea and Antarctica, for marine fish species". PeerJ. 11: e15880. doi: 10.7717/peerj.15880 . ISSN   2167-8359. PMC   10493087 . PMID   37701825.
  16. 1 2 Albers, Peter H.; Camardese, Michael B. (1993). "Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands". Environmental Toxicology and Chemistry . 12 (6): 959–967. doi:10.1002/etc.5620120602.
  17. Franke, Christian; Studinger, Gabriele; Berger, Georgia; Böhling, Stella; Bruckmann, Ursula; Cohors-Fresenborg, Dieter; Jöhncke, Ulrich (October 1994). "The assessment of bioaccumulation". Chemosphere. 29 (7): 1501–1514. Bibcode:1994Chmsp..29.1501F. doi:10.1016/0045-6535(94)90281-X.
  18. 1 2 Dias de Farias, Daniel Solon; Rossi, Silmara; da Costa Bomfim, Aline; Lima Fragoso, Ana Bernadete; Santos-Neto, Elitieri Batista; José de Lima Silva, Flávio; Lailson-Brito, José; Navoni, Julio Alejandro; Gavilan, Simone Almeida; Souza do Amaral, Viviane (1 July 2022). "Bioaccumulation of total mercury, copper, cadmium, silver, and selenium in green turtles (Chelonia mydas) stranded along the Potiguar Basin, northeastern Brazil". Chemosphere. 299: 134331. Bibcode:2022Chmsp.29934331D. doi:10.1016/j.chemosphere.2022.134331. ISSN   0045-6535. PMID   35339524. S2CID   247638704.
  19. 1 2 3 Frossard, Alexandra; Coppo, Gabriel Carvalho; Lourenço, Amanda Toledo; Heringer, Otávio Arruda; Chippari-Gomes, Adriana Regina (1 May 2021). "Metal bioaccumulation and its genotoxic effects on eggs and hatchlings of giant Amazon river turtle (Podocnemis expansa)". Ecotoxicology. 30 (4): 643–657. Bibcode:2021Ecotx..30..643F. doi:10.1007/s10646-021-02384-8. ISSN   1573-3017. PMID   33754232. S2CID   232315423.
  20. Beale, David J.; Hillyer, Katie; Nilsson, Sandra; Limpus, Duncan; Bose, Utpal; Broadbent, James A.; Vardy, Suzanne (1 February 2022). "Bioaccumulation and metabolic response of PFAS mixtures in wild-caught freshwater turtles (Emydura macquarii macquarii) using omics-based ecosurveillance techniques". Science of the Total Environment. 806 (Pt 3): 151264. Bibcode:2022ScTEn.806o1264B. doi: 10.1016/j.scitotenv.2021.151264 . ISSN   0048-9697. PMID   34715216.
  21. Beale, David J.; Nilsson, Sandra; Bose, Utpal; Bourne, Nicholas; Stockwell, Sally; Broadbent, James A.; Gonzalez-Astudillo, Viviana; Braun, Christoph; Baddiley, Brenda; Limpus, Duncan; Walsh, Tom; Vardy, Suzanne (15 April 2022). "Bioaccumulation and impact of maternal PFAS offloading on egg biochemistry from wild-caught freshwater turtles (Emydura macquarii macquarii)". Science of the Total Environment. 817: 153019. Bibcode:2022ScTEn.817o3019B. doi: 10.1016/j.scitotenv.2022.153019 . ISSN   0048-9697. PMID   35026273.
  22. Beale, David J.; Bissett, Andrew; Nilsson, Sandra; Bose, Utpal; Nelis, Joost Laurus Dinant; Nahar, Akhikun; Smith, Matthew; Gonzalez-Astudillo, Viviana; Braun, Christoph; Baddiley, Brenda; Vardy, Suzanne (10 September 2022). "Perturbation of the gut microbiome in wild-caught freshwater turtles (Emydura macquarii macquarii) exposed to elevated PFAS levels". Science of the Total Environment. 838 (Pt 3): 156324. Bibcode:2022ScTEn.838o6324B. doi:10.1016/j.scitotenv.2022.156324. ISSN   0048-9697. PMID   35654195. S2CID   249213966.