Author | Stephen P. Hubbell |
---|---|
Country | United States |
Language | English |
Series | Monographs in Population Biology |
Release number | 32 |
Publisher | Princeton University Press |
Publication date | 2001 |
Pages | 375 |
ISBN | 0-691-02129-5 |
The unified neutral theory of biodiversity and biogeography (here "Unified Theory" or "UNTB") is a theory and the title of a monograph by ecologist Stephen P. Hubbell. [1] It aims to explain the diversity and relative abundance of species in ecological communities. Like other neutral theories of ecology, Hubbell assumes that the differences between members of an ecological community of trophically similar species are "neutral", or irrelevant to their success. This implies that niche differences do not influence abundance and the abundance of each species follows a random walk. [2] The theory has sparked controversy, [3] [4] [5] and some authors consider it a more complex version of other null models that fit the data better. [6]
"Neutrality" means that at a given trophic level in a food web, species are equivalent in birth rates, death rates, dispersal rates and speciation rates, when measured on a per-capita basis. [7] This can be considered a null hypothesis to niche theory. Hubbell built on earlier neutral models, including Robert MacArthur and E.O. Wilson's theory of island biogeography [1] and Stephen Jay Gould's concepts of symmetry and null models. [7]
An "ecological community" is a group of trophically similar, sympatric species that actually or potentially compete in a local area for the same or similar resources. [1] Under the Unified Theory, complex ecological interactions are permitted among individuals of an ecological community (such as competition and cooperation), provided that all individuals obey the same rules. Asymmetric phenomena such as parasitism and predation are ruled out by the terms of reference; but cooperative strategies such as swarming, and negative interaction such as competing for limited food or light are allowed (so long as all individuals behave alike).
The theory predicts the existence of a fundamental biodiversity constant, conventionally written θ, that appears to govern species richness on a wide variety of spatial and temporal scales.
Although not strictly necessary for a neutral theory, many stochastic models of biodiversity assume a fixed, finite community size (total number of individual organisms). There are unavoidable physical constraints on the total number of individuals that can be packed into a given space (although space per se isn't necessarily a resource, it is often a useful surrogate variable for a limiting resource that is distributed over the landscape; examples would include sunlight or hosts, in the case of parasites).
If a wide range of species are considered (say, giant sequoia trees and duckweed, two species that have very different saturation densities), then the assumption of constant community size might not be very good, because density would be higher if the smaller species were monodominant. Because the Unified Theory refers only to communities of trophically similar, competing species, it is unlikely that population density will vary too widely from one place to another.
Hubbell considers the fact that community sizes are constant and interprets it as a general principle: large landscapes are always biotically saturated with individuals. Hubbell thus treats communities as being of a fixed number of individuals, usually denoted by J.
Exceptions to the saturation principle include disturbed ecosystems such as the Serengeti, where saplings are trampled by elephants and Blue wildebeests; or gardens, where certain species are systematically removed.
When abundance data on natural populations are collected, two observations are almost universal:
Such observations typically generate a large number of questions. Why are the rare species rare? Why is the most abundant species so much more abundant than the median species abundance?
A non neutral explanation for the rarity of rare species might suggest that rarity is a result of poor adaptation to local conditions. The UNTB suggests that it is not necessary to invoke adaptation or niche differences because neutral dynamics alone can generate such patterns.
Species composition in any community will change randomly with time. Any particular abundance structure will have an associated probability. The UNTB predicts that the probability of a community of J individuals composed of S distinct species with abundances for species 1, for species 2, and so on up to for species S is given by
where is the fundamental biodiversity number ( is the speciation rate), and is the number of species that have i individuals in the sample.
This equation shows that the UNTB implies a nontrivial dominance-diversity equilibrium between speciation and extinction.
As an example, consider a community with 10 individuals and three species "a", "b", and "c" with abundances 3, 6 and 1 respectively. Then the formula above would allow us to assess the likelihood of different values of θ. There are thus S = 3 species and , all other 's being zero. The formula would give
which could be maximized to yield an estimate for θ (in practice, numerical methods are used). The maximum likelihood estimate for θ is about 1.1478.
We could have labelled the species another way and counted the abundances being 1,3,6 instead (or 3,1,6, etc. etc.). Logic tells us that the probability of observing a pattern of abundances will be the same observing any permutation of those abundances. Here we would have
and so on.
To account for this, it is helpful to consider only ranked abundances (that is, to sort the abundances before inserting into the formula). A ranked dominance-diversity configuration is usually written as where is the abundance of the ith most abundant species: is the abundance of the most abundant, the abundance of the second most abundant species, and so on. For convenience, the expression is usually "padded" with enough zeros to ensure that there are J species (the zeros indicating that the extra species have zero abundance).
It is now possible to determine the expected abundance of the ith most abundant species:
where C is the total number of configurations, is the abundance of the ith ranked species in the kth configuration, and is the dominance-diversity probability. This formula is difficult to manipulate mathematically, but relatively simple to simulate computationally.
The model discussed so far is a model of a regional community, which Hubbell calls the metacommunity. Hubbell also acknowledged that on a local scale, dispersal plays an important role. For example, seeds are more likely to come from nearby parents than from distant parents. Hubbell introduced the parameter m, which denotes the probability of immigration in the local community from the metacommunity. If m = 1, dispersal is unlimited; the local community is just a random sample from the metacommunity and the formulas above apply. If m < 1, dispersal is limited and the local community is a dispersal-limited sample from the metacommunity for which different formulas apply.
It has been shown [8] that , the expected number of species with abundance n, may be calculated by
where θ is the fundamental biodiversity number, J the community size, is the gamma function, and . This formula is an approximation. The correct formula is derived in a series of papers, reviewed and synthesized by Etienne and Alonso in 2005: [9]
where is a parameter that measures dispersal limitation.
is zero for n > J, as there cannot be more species than individuals.
This formula is important because it allows a quick evaluation of the Unified Theory. It is not suitable for testing the theory. For this purpose, the appropriate likelihood function should be used. For the metacommunity this was given above. For the local community with dispersal limitation it is given by:
Here, the for are coefficients fully determined by the data, being defined as
This seemingly complicated formula involves Stirling numbers and Pochhammer symbols, but can be very easily calculated. [9]
An example of a species abundance curve can be found in Scientific American. [10]
UNTB distinguishes between a dispersal-limited local community of size and a so-called metacommunity from which species can (re)immigrate and which acts as a heat bath to the local community. The distribution of species in the metacommunity is given by a dynamic equilibrium of speciation and extinction. Both community dynamics are modelled by appropriate urn processes, where each individual is represented by a ball with a color corresponding to its species. With a certain rate randomly chosen individuals reproduce, i.e. add another ball of their own color to the urn. Since one basic assumption is saturation, this reproduction has to happen at the cost of another random individual from the urn which is removed. At a different rate single individuals in the metacommunity are replaced by mutants of an entirely new species. Hubbell calls this simplified model for speciation a point mutation, using the terminology of the Neutral theory of molecular evolution. The urn scheme for the metacommunity of individuals is the following.
At each time step take one of the two possible actions :
The size of the metacommunity does not change. This is a point process in time. The length of the time steps is distributed exponentially. For simplicity one can assume that each time step is as long as the mean time between two changes which can be derived from the reproduction and mutation rates and . The probability is given as .
The species abundance distribution for this urn process is given by Ewens's sampling formula which was originally derived in 1972 for the distribution of alleles under neutral mutations. The expected number of species in the metacommunity having exactly individuals is: [11]
where is called the fundamental biodiversity number. For large metacommunities and one recovers the Fisher Log-Series as species distribution.
The urn scheme for the local community of fixed size is very similar to the one for the metacommunity.
At each time step take one of the two actions :
The metacommunity is changing on a much larger timescale and is assumed to be fixed during the evolution of the local community. The resulting distribution of species in the local community and expected values depend on four parameters, , , and (or ) and are derived by Etienne and Alonso (2005), [9] including several simplifying limit cases like the one presented in the previous section (there called ). The parameter is a dispersal parameter. If then the local community is just a sample from the metacommunity. For the local community is completely isolated from the metacommunity and all species will go extinct except one. This case has been analyzed by Hubbell himself. [1] The case is characterized by a unimodal species distribution in a Preston Diagram and often fitted by a log-normal distribution. This is understood as an intermediate state between domination of the most common species and a sampling from the metacommunity, where singleton species are most abundant. UNTB thus predicts that in dispersal limited communities rare species become even rarer. The log-normal distribution describes the maximum and the abundance of common species very well but underestimates the number of very rare species considerably which becomes only apparent for very large sample sizes. [1]
The Unified Theory unifies biodiversity, as measured by species-abundance curves, with biogeography, as measured by species-area curves. Species-area relationships show the rate at which species diversity increases with area. The topic is of great interest to conservation biologists in the design of reserves, as it is often desired to harbour as many species as possible.
The most commonly encountered relationship is the power law given by
where S is the number of species found, A is the area sampled, and c and z are constants. This relationship, with different constants, has been found to fit a wide range of empirical data.
From the perspective of Unified Theory, it is convenient to consider S as a function of total community size J. Then for some constant k, and if this relationship were exactly true, the species area line would be straight on log scales. It is typically found that the curve is not straight, but the slope changes from being steep at small areas, shallower at intermediate areas, and steep at the largest areas.
The formula for species composition may be used to calculate the expected number of species present in a community under the assumptions of the Unified Theory. In symbols
where θ is the fundamental biodiversity number. This formula specifies the expected number of species sampled in a community of size J. The last term, , is the expected number of new species encountered when adding one new individual to the community. This is an increasing function of θ and a decreasing function of J, as expected.
By making the substitution (see section on saturation above), then the expected number of species becomes .
The formula above may be approximated to an integral giving
This formulation is predicated on a random placement of individuals.
Consider the following (synthetic) dataset of 27 individuals:
a,a,a,a,a,a,a,a,a,a,b,b,b,b,c,c,c,c,d,d,d,d,e,f,g,h,i
There are thus 27 individuals of 9 species ("a" to "i") in the sample. Tabulating this would give:
a b c d e f g h i 10 4 4 4 1 1 1 1 1
indicating that species "a" is the most abundant with 10 individuals and species "e" to "i" are singletons. Tabulating the table gives:
species abundance 1 2 3 4 5 6 7 8 9 10 number of species 5 0 0 3 0 0 0 0 0 1
On the second row, the 5 in the first column means that five species, species "e" through "i", have abundance one. The following two zeros in columns 2 and 3 mean that zero species have abundance 2 or 3. The 3 in column 4 means that three species, species "b", "c", and "d", have abundance four. The final 1 in column 10 means that one species, species "a", has abundance 10.
This type of dataset is typical in biodiversity studies. Observe how more than half the biodiversity (as measured by species count) is due to singletons.
For real datasets, the species abundances are binned into logarithmic categories, usually using base 2, which gives bins of abundance 0–1, abundance 1–2, abundance 2–4, abundance 4–8, etc. Such abundance classes are called octaves; early developers of this concept included F. W. Preston and histograms showing number of species as a function of abundance octave are known as Preston diagrams.
These bins are not mutually exclusive: a species with abundance 4, for example, could be considered as lying in the 2-4 abundance class or the 4-8 abundance class. Species with an abundance of an exact power of 2 (i.e. 2,4,8,16, etc.) are conventionally considered as having 50% membership in the lower abundance class 50% membership in the upper class. Such species are thus considered to be evenly split between the two adjacent classes (apart from singletons which are classified into the rarest category). Thus in the example above, the Preston abundances would be
abundance class 1 1-2 2-4 4-8 8-16 species 5 0 1.5 1.5 1
The three species of abundance four thus appear, 1.5 in abundance class 2–4, and 1.5 in 4–8.
The above method of analysis cannot account for species that are unsampled: that is, species sufficiently rare to have been recorded zero times. Preston diagrams are thus truncated at zero abundance. Preston called this the veil line and noted that the cutoff point would move as more individuals are sampled.
All biodiversity patterns previously described are related to time-independent quantities. For biodiversity evolution and species preservation, it is crucial to compare the dynamics of ecosystems with models (Leigh, 2007). An easily accessible index of the underlying evolution is the so-called species turnover distribution (STD), defined as the probability P(r,t) that the population of any species has varied by a fraction r after a given time t.
A neutral model that can analytically predict both the relative species abundance (RSA) at steady-state and the STD at time t has been presented in Azaele et al. (2006). [12] Within this framework the population of any species is represented by a continuous (random) variable x, whose evolution is governed by the following Langevin equation:
where b is the immigration rate from a large regional community, represents competition for finite resources and D is related to demographic stochasticity; is a Gaussian white noise. The model can also be derived as a continuous approximation of a master equation, where birth and death rates are independent of species, and predicts that at steady-state the RSA is simply a gamma distribution.
From the exact time-dependent solution of the previous equation, one can exactly calculate the STD at time t under stationary conditions:
This formula provides good fits of data collected in the Barro Colorado tropical forest from 1990 to 2000. From the best fit one can estimate ~ 3500 years with a broad uncertainty due to the relative short time interval of the sample. This parameter can be interpreted as the relaxation time of the system, i.e. the time the system needs to recover from a perturbation of species distribution. In the same framework, the estimated mean species lifetime is very close to the fitted temporal scale . This suggests that the neutral assumption could correspond to a scenario in which species originate and become extinct on the same timescales of fluctuations of the whole ecosystem.
The theory has provoked much controversy as it "abandons" the role of ecology when modelling ecosystems. [13] The theory has been criticized as it requires an equilibrium, yet climatic and geographical conditions are thought to change too frequently for this to be attained. [13] Tests on bird and tree abundance data demonstrate that the theory is usually a poorer match to the data than alternative null hypotheses that use fewer parameters (a log-normal model with two tunable parameters, compared to the neutral theory's three [6] ), and are thus more parsimonious. [2] The theory also fails to describe coral reef communities, studied by Dornelas et al., [14] and is a poor fit to data in intertidal communities. [15] It also fails to explain why families of tropical trees have statistically highly correlated numbers of species in phylogenetically unrelated and geographically distant forest plots in Central and South America, Africa, and South East Asia. [16]
While the theory has been heralded as a valuable tool for palaeontologists, [7] little work has so far been done to test the theory against the fossil record. [17]
In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom.
In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.
Arc length is the distance between two points along a section of a curve.
In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.
In natural language processing, Latent Dirichlet Allocation (LDA) is a Bayesian network that explains a set of observations through unobserved groups, and each group explains why some parts of the data are similar. The LDA is an example of a Bayesian topic model. In this, observations are collected into documents, and each word's presence is attributable to one of the document's topics. Each document will contain a small number of topics.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.
In relativity theory, proper acceleration is the physical acceleration experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.
In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.
In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.
In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.
In machine learning, automatic basis function construction is the mathematical method of looking for a set of task-independent basis functions that map the state space to a lower-dimensional embedding, while still representing the value function accurately. Automatic basis construction is independent of prior knowledge of the domain, which allows it to perform well where expert-constructed basis functions are difficult or impossible to create.
In physics, the distorted Schwarzschild metric is the metric of a standard/isolated Schwarzschild spacetime exposed in external fields. In numerical simulation, the Schwarzschild metric can be distorted by almost arbitrary kinds of external energy–momentum distribution. However, in exact analysis, the mature method to distort the standard Schwarzschild metric is restricted to the framework of Weyl metrics.
In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.