Deimatic behaviour

Last updated

Spirama helicina resembling the face of a snake in a deimatic or bluffing display Spirama helicina-W-Thailand7810.JPG
Spirama helicina resembling the face of a snake in a deimatic or bluffing display

Deimatic behaviour or startle display [1] means any pattern of bluffing behaviour in an animal that lacks strong defences, such as suddenly displaying conspicuous eyespots, to scare off or momentarily distract a predator, thus giving the prey animal an opportunity to escape. [2] [3] The term deimatic or dymantic originates from the Greek δειματόω (deimatóo), meaning "to frighten". [4] [5]

Contents

Deimatic display occurs in widely separated groups of animals, including moths, butterflies, mantises and phasmids among the insects. In the cephalopods, different species of octopuses, [6] squids, cuttlefish and the paper nautilus are deimatic.

Displays are classified as deimatic or aposematic by the responses of the animals that see them. Where predators are initially startled but learn to eat the displaying prey, the display is classed as deimatic, and the prey is bluffing; where they continue to avoid the prey after tasting it, the display is taken as aposematic, meaning the prey is genuinely distasteful. However, these categories are not necessarily mutually exclusive. It is possible for a behaviour to be both deimatic and aposematic, if it both startles a predator and indicates the presence of anti-predator adaptations.

Vertebrates including several species of frog put on warning displays; some of these species have poison glands. Among the mammals, such displays are often found in species with strong defences, such as in foul-smelling skunks and spiny porcupines. Thus these displays in both frogs and mammals are at least in part aposematic.

In insects

Threat displays are not always deimatic bluff. Some stick insects spray the monoterpene chemical dolichodial when attacked, so their displays are honest aposematism. Dolichodial.svg
Threat displays are not always deimatic bluff. Some stick insects spray the monoterpene chemical dolichodial when attacked, so their displays are honest aposematism.
A puss moth (Cerura vinula) caterpillar displaying its two flagella on its tail and red patches on its head. If the threat does not retreat, the caterpillar can fire formic acid from its flagella. Notodontidae - Cerura vinula.jpg
A puss moth ( Cerura vinula ) caterpillar displaying its two flagella on its tail and red patches on its head. If the threat does not retreat, the caterpillar can fire formic acid from its flagella.

Deimatic displays are made by insects including the praying mantises (Mantodea) and stick insects (Phasmatodea). While undisturbed, these insects are usually well camouflaged. When disturbed by a potential predator, they suddenly reveal their hind wings, which are brightly coloured. In mantises, the wing display is sometimes reinforced by showing brightly coloured front legs, and accompanied by a loud hissing sound created by stridulation. For example, the grasshopper Phymateus displays red and yellow areas on its hind wings; it is also aposematic, producing a distasteful secretion from its thorax. [3] Similarly the threat display of the walking stick phasmid ( Peruphasma schultei ) is not a bluff: the insect sprays defensive dolichodial-like monoterpene chemical compounds at attackers. [7]

Among moths with deimatic behaviour, the eyed hawkmoth ( Smerinthus ocellatus ) displays its large eyespots, moving them slowly as if it were a vertebrate predator such as an owl. [3] Among butterflies, the peacock butterfly Aglais io is a cryptic leaf mimic with wings closed, but displays four conspicuous eyespots when disturbed, in a display effective against insectivorous birds (flycatchers). [8]

An experiment by the Australian zoologist A. D. Blest demonstrated that the more an eyespot resembled a real vertebrate eye in both colour and pattern, the more effective it was in scaring off insectivorous birds. In another experiment using peacock butterflies, Blest showed that when the conspicuous eyespots had been rubbed off, insectivorous birds (yellow buntings) were much less effectively frightened off, and therefore both the sudden appearance of colour, and the actual eyespot pattern, contribute to the effectiveness of the deimatic display. [3]

Some noctuid moths, such as the large red underwing (Catocala nupta), are cryptic at rest, but display a flash of startlingly bright colours when disturbed. [9] Others, such as many species of genus Speiredonia and Spirama , look threatening while at rest. Also saturniid moths of the genera Attacus and Rothschildia display snake heads, but not from the frontal position. [10]

Many arctiid moths make clicks when hunted by echolocating bats; they also often contain unpalatable chemicals. Some such as dogbane tiger moths ( Cycnia tenera ) have ears and conspicuous coloration, and start to make clicks when echolocating bats approach. An experiment by the Canadian zoologists John M. Ratcliffe and James H. Fullard, using dogbane tiger moths and northern long-eared bats ( Myotis septentrionalis ), suggests that the signals in fact both disrupt echolocation and warn of chemical defence. The behaviour of these insects is thus both deimatic and aposematic. [11]

In arachnids

Both spiders and scorpions are venomous, so their threat displays can be considered generally aposematic. However, some predators such as hedgehogs and spider-hunting wasps (Pompilidae) actively hunt arachnids, overcoming their defences, so when a hedgehog is startled by, for instance, the sounds made by a scorpion, there is reason to describe the display as deimatic. [12]

Spiders make use of a variety of different threat displays. Some such as Argiope and Pholcus make themselves and their webs vibrate rapidly when they are disturbed; this blurs their outline and perhaps makes them look larger, as well as more difficult to locate precisely for an attack. [13] Mygalomorphae spiders such as tarantulas exhibit deimatic behaviour; when threatened, the spider rears back with its front legs and pedipalps spread and fangs bared. Some species, such as the dangerous Indian ornamental tree spider ( Poecilotheria regalis ) have bright colouring on the front legs and mouthparts which are shown off in its threat display when it "rears up on its hind legs, and brandishes the fore limbs and palpi in the air". [14]

Scorpions perform non-bluffing threat displays, as they have powerful defences, but various predators still eat them. When provoked, they spread their pincers and in some cases raise their abdomens, their tails standing near-erect with the sting ready for immediate use. Some scorpions in addition produce deimatic noises by stridulating with the pedipalps and first legs. [12]

In cephalopods

Deimatic display: Callistoctopus macropus generates a bright brownish red colour with white oval spots when disturbed. Octopus macropus.jpg
Deimatic display: Callistoctopus macropus generates a bright brownish red colour with white oval spots when disturbed.

Deimatic behaviour is found in cephalopods including the common cuttlefish Sepia officinalis , squid such as the Caribbean reef squid ( Sepioteuthis sepioidea ) and bigfin reef squid ( Sepioteuthis lessoniana ), octopuses [15] including the common octopus Octopus vulgaris and the Atlantic white-spotted octopus ( Octopus macropus ), and the paper nautilus ( Argonauta argo ). Deimatic cephalopod displays involve suddenly creating bold stripes, often reinforced by stretching out the animal's arms, fins or web to make it look as big and threatening as possible. [16]

For example, in the common cuttlefish the display consists of flattening the body, making the skin pale, showing a pair of eyespots on the mantle, dark eye rings, and a dark line on the fins, and dilating the pupils of the eyes. [16] The common octopus similarly displays pale skin and dark eye rings with dilated pupils, but also curls its arms and stretches out the web between the arms as far as possible, and squirts out jets of water. [16] Other octopuses such as Atlantic white-spotted octopus turn bright brownish red with oval white spots all over in a high contrast display. [16] [17] The paper nautilus can rapidly change its appearance: it suddenly withdraws the shining iridescent web formed by its first pair of arms from its shell. [16]

In vertebrates

Frill-necked lizard faces predators, making itself look big with head frills, raising its body and waving its tail. Chlamydosaurus kingii.jpg
Frill-necked lizard faces predators, making itself look big with head frills, raising its body and waving its tail.

Among vertebrates, the Australian frill-necked lizard ( Chlamydosaurus kingii ) has a startling display in which wide semicircular frills on either side of the head are fanned out; the mouth is opened wide exposing the gape; the tail is waved over the body, and the body is raised, so that the animal appears as large and threatening as possible. [18]

Frogs such as Physalaemus nattereri , Physalaemus deimaticus , and Pleurodema brachyops have a warning display behaviour. These animals inflate themselves with air and raise their hind parts to appear as large as possible, and display brightly coloured markings and eyespots to intimidate predators. Seven species of frogs in the genus Pleurodema have lumbar glands (making the animals distasteful, so in their case the display is likely aposematic); these glands are usually boldly contrasted in black as a further warning. [19]

Non-bluffing (aposematic) displays occur in mammals which possess powerful defences such as spines or stink glands, and which habitually warn off potential predators rather than attempting escape by running. The lowland streaked tenrec ( Hemicentetes semispinosus ) raises the spines on its head and back when confronted by a predator, and moves its head up and down. Porcupines such as Erethizon erect their long sharp quills and adopt a hunched, head-down posture when a predator is nearby. The spotted skunk ( Spilogale putorius ) balances on its front legs, its body raised vertically with its bold pelage pattern conspicuously displayed, and its tail (near the scent glands) raised and spread out. [20]

Deimatic or aposematic?

See also

Related Research Articles

<span class="mw-page-title-main">Venom</span> Toxin secreted by an animal

Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action. The toxin is delivered through a specially evolved venom apparatus, such as fangs or a stinger, in a process called envenomation. Venom is often distinguished from poison, which is a toxin that is passively delivered by being ingested, inhaled, or absorbed through the skin, and toxungen, which is actively transferred to the external surface of another animal via a physical delivery mechanism.

<span class="mw-page-title-main">Butterfly</span> Group of insects in the order Lepidoptera

Butterflies are winged insects from the lepidopteran suborder Rhopalocera, characterized by large, often brightly coloured wings that often fold together when at rest, and a conspicuous, fluttering flight. The group comprises the superfamilies Hedyloidea and Papilionoidea. The oldest butterfly fossils have been dated to the Paleocene, about 56 million years ago, though they may have originated earlier.

<span class="mw-page-title-main">Mimicry</span> Imitation of another species for selective advantage

In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. Often, mimicry functions to protect a species from predators, making it an anti-predator adaptation. Mimicry evolves if a receiver perceives the similarity between a mimic and a model and as a result changes its behaviour in a way that provides a selective advantage to the mimic. The resemblances that evolve in mimicry can be visual, acoustic, chemical, tactile, or electric, or combinations of these sensory modalities. Mimicry may be to the advantage of both organisms that share a resemblance, in which case it is a form of mutualism; or mimicry can be to the detriment of one, making it parasitic or competitive. The evolutionary convergence between groups is driven by the selective action of a signal-receiver or dupe. Birds, for example, use sight to identify palatable insects and butterflies, whilst avoiding the noxious ones. Over time, palatable insects may evolve to resemble noxious ones, making them mimics and the noxious ones models. In the case of mutualism, sometimes both groups are referred to as "co-mimics". It is often thought that models must be more abundant than mimics, but this is not so. Mimicry may involve numerous species; many harmless species such as hoverflies are Batesian mimics of strongly defended species such as wasps, while many such well-defended species form Müllerian mimicry rings, all resembling each other. Mimicry between prey species and their predators often involves three or more species.

<i>Aglais io</i> Species of butterfly

Aglais io, the European peacock, or the peacock butterfly, is a colourful butterfly, found in Europe and temperate Asia as far east as Japan. It was formerly classified as the only member of the genus Inachis. It should not be confused or classified with the "American peacocks" in the genus Anartia; while belonging to the same family as the European peacock, Nymphalidae, the American peacocks are not close relatives of the Eurasian species. The peacock butterfly is resident in much of its range, often wintering in buildings or trees. It therefore often appears quite early in spring. The peacock butterfly has figured in research in which the role of eyespots as an anti-predator mechanism has been investigated. The peacock is expanding its range and is not known to be threatened.

<span class="mw-page-title-main">Arctiinae</span> Subfamily of moths

The Arctiinae are a large and diverse subfamily of moths with around 11,000 species found all over the world, including 6,000 neotropical species. This subfamily includes the groups commonly known as tiger moths, which usually have bright colours, footmen, which are usually much drabber, lichen moths, and wasp moths. Many species have "hairy" caterpillars that are popularly known as woolly bears or woolly worms. The scientific name Arctiinae refers to this hairiness. Some species within the Arctiinae have the word "tussock"' in their common names because they have been misidentified as members of the Lymantriinae subfamily based on the characteristics of the larvae.

<span class="mw-page-title-main">Batesian mimicry</span> Bluffing imitation of a strongly defended species

Batesian mimicry is a form of mimicry where a harmless species has evolved to imitate the warning signals of a harmful species directed at a predator of them both. It is named after the English naturalist Henry Walter Bates, who worked on butterflies in the rainforests of Brazil.

<span class="mw-page-title-main">Anti-predator adaptation</span> Defensive feature of prey for selective advantage

Anti-predator adaptations are mechanisms developed through evolution that assist prey organisms in their constant struggle against predators. Throughout the animal kingdom, adaptations have evolved for every stage of this struggle, namely by avoiding detection, warding off attack, fighting back, or escaping when caught.

<span class="mw-page-title-main">Aposematism</span> Honest signalling of an animals powerful defences

Aposematism is the advertising by an animal to potential predators that it is not worth attacking or eating. This unprofitability may consist of any defenses which make the prey difficult to kill and eat, such as toxicity, venom, foul taste or smell, sharp spines, or aggressive nature. These advertising signals may take the form of conspicuous coloration, sounds, odours, or other perceivable characteristics. Aposematic signals are beneficial for both predator and prey, since both avoid potential harm.

<i>Antheraea polyphemus</i> Species of moth

Antheraea polyphemus, the Polyphemus moth, is a North American member of the family Saturniidae, the giant silk moths. It is a tan-colored moth, with an average wingspan of 15 cm (6 in). The most notable feature of the moth is its large, purplish eyespots on its two hindwings. The eyespots give it its name – from the Greek myth of the cyclops Polyphemus. The species was first described by Pieter Cramer in 1776. The species is widespread in continental North America, with local populations found throughout subarctic Canada and the United States. The caterpillar can eat 86,000 times its weight at emergence in a little less than two months. Polyphemus moths are considered to be very polyphagous, meaning they eat from a wide variety of plants.

<span class="mw-page-title-main">Automimicry</span> Mimicry of part of own body, e.g. the head

In zoology, automimicry, Browerian mimicry, or intraspecific mimicry, is a form of mimicry in which the same species of animal is imitated. There are two different forms.

<span class="mw-page-title-main">Eyespot (mimicry)</span> Eye-like marking used for mimicry or distraction

An eyespot is an eye-like marking. They are found in butterflies, reptiles, cats, birds and fish.

<span class="mw-page-title-main">Animal coloration</span> General appearance of an animal

Animal colouration is the general appearance of an animal resulting from the reflection or emission of light from its surfaces. Some animals are brightly coloured, while others are hard to see. In some species, such as the peafowl, the male has strong patterns, conspicuous colours and is iridescent, while the female is far less visible.

<i>Eurycnema goliath</i> Species of stick insect

Eurycnema goliath, commonly known as the goliath stick insect, or the regal stick insect, is a large species of stick insect in the family Phasmatidae, endemic to Australia and considered one of the largest species of stick insects in the country. The species has the Phasmid Study Group number PSG14.

<i>Idolomantis</i> Genus of praying mantises

Idolomantis is a monotypic genus of praying mantises in the family Empusidae. It contains the single species, Idolomantis diabolica, commonly known as the devil's flower mantis or giant devil's flower mantis. It is one of the largest species of praying mantises, and is possibly the largest that mimics flowers.

<i>Pseudocreobotra wahlbergi</i> Species of praying mantis

Pseudocreobotra wahlbergi, or the spiny flower mantis, is a small flower mantis native to southern and eastern Africa.

Insects have a wide variety of predators, including birds, reptiles, amphibians, mammals, carnivorous plants, and other arthropods. The great majority (80–99.99%) of individuals born do not survive to reproductive age, with perhaps 50% of this mortality rate attributed to predation. In order to deal with this ongoing escapist battle, insects have evolved a wide range of defense mechanisms. The only restraint on these adaptations is that their cost, in terms of time and energy, does not exceed the benefit that they provide to the organism. The further that a feature tips the balance towards beneficial, the more likely that selection will act upon the trait, passing it down to further generations. The opposite also holds true; defenses that are too costly will have a little chance of being passed down. Examples of defenses that have withstood the test of time include hiding, escape by flight or running, and firmly holding ground to fight as well as producing chemicals and social structures that help prevent predation.

<i>Adaptive Coloration in Animals</i> 1940 textbook on camouflage, mimicry and aposematism by Hugh Cott

Adaptive Coloration in Animals is a 500-page textbook about camouflage, warning coloration and mimicry by the Cambridge zoologist Hugh Cott, first published during the Second World War in 1940; the book sold widely and made him famous.

Deception in animals is the transmission of misinformation by one animal to another, of the same or different species, in a way that propagates beliefs that are not true.

Tail vibration is a common behavior in some snakes where the tail is vibrated rapidly as a defensive response to a potential predator. Tail vibration is distinct from caudal luring, where the tail is twitched in order to attract prey. While rattlesnakes are perhaps the most famous group of snakes to exhibit tail vibration behavior, many other snake groups—particularly those in the Colubridae and Viperidae families—are known to vibrate their tails.

In evolutionary biology, mimicry in vertebrates is mimicry by a vertebrate of some model, deceiving some other animal, the dupe. Mimicry differs from camouflage as it is meant to be seen, while animals use camouflage to remain hidden. Visual, olfactory, auditory, biochemical, and behavioral modalities of mimicry have been documented in vertebrates.

References

  1. Startle Display. Elsevier. Retrieved 17 December 2016
  2. Stevens, Martin (2005). "The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera". Biological Reviews. 80 (4): 573–588. doi:10.1017/S1464793105006810. PMID   16221330. S2CID   24868603.
  3. 1 2 3 4 Edmunds, Malcolm (2012). "Deimatic Behavior". Springer. Retrieved 31 December 2012.
  4. Umbers, Kate D.L.; Lehtonen, Jussi; Mappes, Johanna (2015). "Deimatic displays". Current Biology. 25 (2): R58–59. doi: 10.1016/j.cub.2014.11.011 . PMID   25602301.
  5. "δειματόω frighten". Greek Word Study Tool. Retrieved 5 June 2016.
  6. Smith, Ian (3 December 2012). "Octopus vulgaris. Dymantic display". The Conchological Society of Great Britain and Ireland. Retrieved 1 January 2013.
  7. Dossey, Aaron Todd (2006). Chemical Biodiversity And Signaling: Detailed Analysis Of Fmrfamide-Like Neuropeptides And Other Natural Products By Nmr And Bioinformatics. University of Florida (PhD thesis).
  8. Merilaita, Sami; Vallin, Adrian; Kodandaramaiah, Ullasa; Dimitrova, Marina; Ruuskanen, Suvi; Laaksonen, Toni (26 July 2011). "Behavioral Ecology". Number of Eyespots and Their Intimidating Effect on Naïve Predators in the Peacock Butterfly. 22 (6): 1326–1331. doi: 10.1093/beheco/arr135 .
  9. Gullan and Cranston, 2010. p 370.
  10. Edmunds, Malcolm (2005). "Deimatic behavior". p. 677. doi:10.1007/0-306-48380-7_1185. ISBN   978-0-7923-8670-4.{{cite book}}: |journal= ignored (help); Missing or empty |title= (help)
  11. Ratcliffe, John M.; Fullard, James H. (2005). "The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach" (PDF). Journal of Experimental Biology. 208 (Pt 24): 4689–4698. doi: 10.1242/jeb.01927 . PMID   16326950. S2CID   22421644.
  12. 1 2 Edwards, 1974. pp. 158–159
  13. Edwards, 1974. p. 159
  14. Cott, 1940. p. 215
  15. Gleadall, Ian G. (2004). "Some Old and New Genera of Octopus" (PDF). Interdisciplinary Information Sciences. 10 (2): 99–112. doi:10.4036/iis.2004.99. Archived from the original (PDF) on 2013-07-31. Retrieved 2013-01-01.
  16. 1 2 3 4 5 Hanlon and Messenger, 1998. pp 80–81.
  17. Wigton, Rachel; Wood, James B. "Marine Invertebrates of Bermuda". Grass octopus (Octopus macropus). Archived from the original on 19 January 2016. Retrieved 1 January 2013.
  18. Cott, 1940. p. 218.
  19. Martins, Marcio (1989). "Deimatic Behavior in Pleuroderma brachyops" (PDF). Journal of Herpetology. 23 (3): 305–307. doi:10.2307/1564457. JSTOR   1564457. Archived from the original (PDF) on 2022-04-04. Retrieved 2012-12-31.
  20. Marks, 1987. pp 70–74, and Figure 3.9 based on Edmunds 1974.
  21. 1 2 Fenton, M. Brock; Licht, Lawrence E. (September 1990). "Why Rattle Snake?". Journal of Herpetology. 24 (3): 274. doi:10.2307/1564394. JSTOR   1564394.
  22. Bates, David L.; Fenton, M. Brock (1990). "Aposematism or startle? Predators learn their responses to the defenses of prey". Canadian Journal of Zoology. 68 (1): 49–52. doi:10.1139/z90-009.

Bibliography