Frequency-dependent selection is an evolutionary process by which the fitness of a phenotype or genotype depends on the phenotype or genotype composition of a given population.
Frequency-dependent selection is usually the result of interactions between species (predation, parasitism, or competition), or between genotypes within species (usually competitive or symbiotic), and has been especially frequently discussed with relation to anti-predator adaptations. Frequency-dependent selection can lead to polymorphic equilibria, which result from interactions among genotypes within species, in the same way that multi-species equilibria require interactions between species in competition (e.g. where αij parameters in Lotka-Volterra competition equations are non-zero). Frequency-dependent selection can also lead to dynamical chaos when some individuals' fitnesses become very low at intermediate allele frequencies. [2] [3]
The first explicit statement of frequency-dependent selection appears to have been by Edward Bagnall Poulton in 1884, on the way that predators could maintain color polymorphisms in their prey. [5] [6]
Perhaps the best known early modern statement of the principle is Bryan Clarke's 1962 paper on apostatic selection (a synonym of negative frequency-dependent selection). [7] Clarke discussed predator attacks on polymorphic British snails, citing Luuk Tinbergen's classic work on searching images as support that predators such as birds tended to specialize in common forms of palatable species. [8] Clarke later argued that frequency-dependent balancing selection could explain molecular polymorphisms (often in the absence of heterosis) in opposition to the neutral theory of molecular evolution.[ citation needed ]
Another example is plant self-incompatibility alleles. When two plants share the same incompatibility allele, they are unable to mate. Thus, a plant with a new (and therefore, rare) allele has more success at mating, and its allele spreads quickly through the population. [9]
A similar example is the csd alleles of the honey bee. A larva that is homozygous at csd is inviable. Therefore rare alleles spread through the population, pushing the gene pool toward an ideal equilibrium where every allele is equally common. [10]
The major histocompatibility complex (MHC) is involved in the recognition of foreign antigens and cells. [11] Frequency-dependent selection may explain the high degree of polymorphism in the MHC. [12]
In behavioral ecology, negative frequency-dependent selection often maintains multiple behavioral strategies within a species. A classic example is the Hawk-Dove model of interactions among individuals in a population. In a population with two traits A and B, being one form is better when most members are the other form. As another example, male common side-blotched lizards have three morphs, which either defend large territories and maintain large harems of females, defend smaller territories and keep one female, or mimic females in order to sneak matings from the other two morphs. These three morphs participate in a rock paper scissors sort of interaction such that no one morph completely outcompetes the other two. [13] [14] Another example occurs in the scaly-breasted munia, where certain individuals become scroungers and others become producers. [15]
A common misconception is that negative frequency-dependent selection causes the genetic diversity of influenza haemagglutinin (HA) glycoproteins. This is not an example of negative frequency-dependent selection. This is because the rate at which a particular influenza strain will spread is linked to absolute abundance, not relative abundance. [16]
Positive frequency-dependent selection gives an advantage to common phenotypes. A good example is warning coloration in aposematic species. Predators are more likely to remember a common color pattern that they have already encountered frequently than one that is rare. This means that new mutants or migrants that have color patterns other than the common type are eliminated from the population by differential predation. Positive frequency-dependent selection provides the basis for Müllerian mimicry, as described by Fritz Müller, [17] because all species involved are aposematic and share the benefit of a common, honest signal to potential predators.[ citation needed ]
Another, rather complicated example occurs in the Batesian mimicry complex between a harmless mimic, the scarlet kingsnake ( Lampropeltis elapsoides ), and the model, the eastern coral snake ( Micrurus fulvius ), in locations where the model and mimic were in deep sympatry, the phenotype of the scarlet kingsnake was quite variable due to relaxed selection. But where the pattern was rare, the predator population was not 'educated', so the pattern brought no benefit. The scarlet kingsnake was much less variable on the allopatry/sympatry border of the model and mimic, most probably due to increased selection since the eastern coral snake is rare, but present, on this border. Therefore, the coloration is only advantageous once it has become common. [18]
An allele is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. The word is a short form of "allelomorph".
In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.
Disassortative mating is a mating pattern in which individuals with dissimilar phenotypes mate with one another more frequently than would be expected under random mating. Disassortative mating reduces the mean genetic similarities within the population and produces a greater number of heterozygotes. The pattern is character specific, but does not affect allele frequencies. This nonrandom mating pattern will result in deviation from the Hardy-Weinberg principle.
This is a list of topics in evolutionary biology.
Balancing selection refers to a number of selective processes by which multiple alleles are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. It can occur by various mechanisms, in particular, when the heterozygotes for the alleles under consideration have a higher fitness than the homozygote. In this way genetic polymorphism is conserved.
A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. The specific case of heterozygote advantage due to a single locus is known as overdominance. Overdominance is a rare condition in genetics where the phenotype of the heterozygote lies outside of the phenotypical range of both homozygote parents, and heterozygous individuals have a higher fitness than homozygous individuals.
Disruptive selection, also called diversifying selection, describes changes in population genetics in which extreme values for a trait are favored over intermediate values. In this case, the variance of the trait increases and the population is divided into two distinct groups. In this more individuals acquire peripheral character value at both ends of the distribution curve.
The viceroy is a North American butterfly. It was long thought to be a Batesian mimic of the monarch butterfly, but since the viceroy is also distasteful to predators, it is now considered a Müllerian mimic instead.
Apostatic selection is a form of negative frequency-dependent selection. It describes the survival of individual prey animals that are different from their species in a way that makes it more likely for them to be ignored by their predators. It operates on polymorphic species, species which have different forms. In apostatic selection, the common forms of a species are preyed on more than the rarer forms, giving the rare forms a selective advantage in the population. It has also been discussed that apostatic selection acts to stabilize prey polymorphisms.
Müllerian mimicry is a natural phenomenon in which two or more well-defended species, often foul-tasting and sharing common predators, have come to mimic each other's honest warning signals, to their mutual benefit. The benefit to Müllerian mimics is that predators only need one unpleasant encounter with one member of a set of Müllerian mimics, and thereafter avoid all similar coloration, whether or not it belongs to the same species as the initial encounter. It is named after the German naturalist Fritz Müller, who first proposed the concept in 1878, supporting his theory with the first mathematical model of frequency-dependent selection, one of the first such models anywhere in biology.
The common side-blotched lizard is a species of side-blotched lizard in the family Phrynosomatidae. The species is native to dry regions of the western United States and northern Mexico. It is notable for having a unique form of polymorphism wherein each of the three different male morphs utilizes a different strategy in acquiring mates. The three morphs compete against each other following a pattern of rock paper scissors, where one morph has advantages over another but is outcompeted by the third.
A polyphenic trait is a trait for which multiple, discrete phenotypes can arise from a single genotype as a result of differing environmental conditions. It is therefore a special case of phenotypic plasticity.
Prey switching is frequency-dependent predation, where the predator preferentially consumes the most common type of prey. The phenomenon has also been described as apostatic selection, however the two terms are generally used to describe different parts of the same phenomenon. Apostatic selection has been used by authors looking at the differences between different genetic morphs. In comparison, prey switching has been used when describing the choice between different species.
Papilio dardanus, the African swallowtail, mocker swallowtail or flying handkerchief, is a species of butterfly in the family Papilionidae. The species is broadly distributed throughout Sub-Saharan Africa. The British entomologist E. B. Poulton described it as "the most interesting butterfly in the world".
Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.
Many types of polymorphism can be seen in the insect order Lepidoptera. Polymorphism is the appearance of forms or "morphs" differing in color and number of attributes within a single species. In Lepidoptera, polymorphism can be seen not only between individuals in a population but also between the sexes as sexual dimorphism, between geographically separated populations in geographical polymorphism and also between generations flying at different seasons of the year. It also includes the phenomenon of mimicry when mimetic morphs fly alongside non-mimetic morphs in a population of a particular species. Polymorphism occurs both at a specific level with heritable variation in the overall morphological design of individuals as well as in certain specific morphological or physiological traits within a species.
Frequency-dependent foraging is defined as the tendency of an individual to selectively forage on a certain species or morph based on its relative frequency within a population. Specifically for pollinators, this refers to the tendency to visit a particular floral morph or plant species based on its frequency within the local plant community, even if nectar rewards are equivalent amongst different morphs. Pollinators that forage in a frequency-dependent manner will exhibit flower constancy for a certain morph, but the preferred floral type will be dependent on its frequency. Additionally, frequency-dependent foraging differs from density-dependent foraging as the latter considers the absolute number of certain morphs per unit area as a factor influencing pollinator choice. Although density of a morph will be related to its frequency, common morphs are still preferred when overall plant densities are high.
An alternative mating strategy is a strategy used by male or female animals, often with distinct phenotypes, that differs from the prevailing mating strategy of their sex. Such strategies are diverse and variable both across and within species. Animal sexual behaviour and mate choice directly affect social structure and relationships in many different mating systems, whether monogamous, polygamous, polyandrous, or polygynous. Though males and females in a given population typically employ a predominant reproductive strategy based on the overarching mating system, individuals of the same sex often use different mating strategies. Among some reptiles, frogs and fish, large males defend females, while small males may use sneaking tactics to mate without being noticed.
This glossary of evolutionary biology is a list of definitions of terms and concepts used in the study of evolutionary biology, population biology, speciation, and phylogenetics, as well as sub-disciplines and related fields. For additional terms from related glossaries, see Glossary of genetics, Glossary of ecology, and Glossary of biology.