Common side-blotched lizard

Last updated

Common side-blotched lizard
Joshua Tree NP - Desert Side-blotched Lizard - 1.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Suborder: Iguania
Family: Phrynosomatidae
Genus: Uta
Species:
U. stansburiana
Binomial name
Uta stansburiana
Baird & Girard, 1852
Subspecies
Uta stansburiana distribution.png
Synonyms
  • Uta concinna
  • Uta elegans
  • Uta levis
  • Uta martinensis
  • Uta stansburiana hesperis
  • Uta stellata
  • Uta wrighti
  • Uta irregularis
  • Uta lateralis
  • Uta nelsoni
  • Uta tuberculata

The common side-blotched lizard (Uta stansburiana) is a species of side-blotched lizard in the family Phrynosomatidae. The species is native to dry regions of the western United States and northern Mexico. It is notable for having a unique form of polymorphism wherein each of the three different male morphs utilizes a different strategy in acquiring mates. The three morphs compete against each other following a pattern of rock paper scissors, where one morph has advantages over another but is outcompeted by the third. [2] [3] [4]

Contents

Etymology

The specific epithet, stansburiana, is in honor of Captain Howard Stansbury of the US Corps of Topographical Engineers, who collected the first specimens while leading the 1849-1851 expedition to explore and survey the Great Salt Lake of Utah. [5] [6]

Taxonomy

Image of common side-blotched lizard. A distinguishing feature of this species is the dark blotch behind the front leg, which is clearly seen in this image. The dark blotch is generally less prominent in females than in this male. Desert Side-blotched Lizard - Uta stansburiana stejnegeri, White Sands National Monument, Alamogordo, New Mexico.jpg
Image of common side-blotched lizard. A distinguishing feature of this species is the dark blotch behind the front leg, which is clearly seen in this image. The dark blotch is generally less prominent in females than in this male.

The systematics and taxonomy of the widespread and variable lizards of the genus Uta is much disputed. [7] [8] Countless forms and morphs have been described as subspecies or even distinct species. [9]

The male (pictured above) is more brightly colored than the female and is usually distinguished by the presence of blue spots on its back, especially near the base of the tail. Also, the base of the tail is swollen in the male. Uta stansburiana 7963.JPG
The male (pictured above) is more brightly colored than the female and is usually distinguished by the presence of blue spots on its back, especially near the base of the tail. Also, the base of the tail is swollen in the male.

Physical description

The common side-blotched lizard is a species of small iguanid lizard. Males can grow up to 60mm (2.4 inches) from snout to vent, while females are typically a little smaller. The degree of pigmentation varies with sex and population. Some males can have blue flecks spread over their backs and tails, and their sides may be yellow or orange, while others may be unpatterned. Females may have stripes along their backs/sides, or again may be relatively drab. Both sexes have a prominent blotch on their sides, just behind their front limbs. [13] Coloration is especially important in common side-blotched lizards, as it is closely related to the mating behavior of both males and females. [2] [14]

The different throat morphologies that the side-blotched lizard adopts also affects their sprinting speed. Across all three morphs, sprinting speed is positively correlated with blue hue, the brightness of the yellow throat, and the level of saturation of the orange throats. While aspects of throat coloration are positively related to sprinting speed and mass of the lizard, they do not affect the lizard’s snout-vent and hind limb length. Researchers from Utah State University have suggested that this relationship between physical capabilities and coloration plays a role in sexual competition amongst male side-blotched lizards. [15]

The speed of these male lizards during the end of their reproductive seasons is dependent on their body temperature. The maximum sprinting speed of these lizards is achieved when the body temperature is between 35-38 degrees Celsius. [16]

Physiology

When comparing populations within wind farms and in neighbouring control sites, no differences in oxidative stress are seen in the side-blotched lizard. In females oxidative stress also increases with the number of yolk follicles produced. [17]

Genetic determination of throat-color polymorphism

Analysis of DNA nuclear microsatellites has provided genetic evidence for the rock-paper-scissors behavior pattern of male side-blotched lizard competition. In populations where all three morphs are present, shared paternity between yellow- and blue-throated individuals occurs at a rate significantly below random chance, while shared paternity between yellow- and orange-throated males occurs at a rate significantly above chance. In addition, blue-throated males often shared paternity with orange-throated males, despite having mostly yellow-throated neighbors. [3]

Blood plasma testosterone levels play an important role in the creation of the three male morphs both during and after development. Orange-throated males have 46-48% higher plasma testosterone levels compared to their yellow- or blue-throated counterparts. Experimental elevation of plasma testosterone levels in the other two male morphs led to increases in endurance, aggressiveness, and territory size to the degree expressed by normal orange-throated males. In addition, the transformation of yellow-throated males to blue-throated males is accompanied by an increase in their plasma testosterone levels. [18]

Throat color in side-blotched lizards is genetically determined, and has high heritability. [2] It is determined by a single Mendelian factor with three alleles. In males, the o allele is the dominant allele, and the b allele is recessive to the y allele. Therefore, phenotypically orange-throated males have genotypes of either oo, ob, or oy. Yellow-throated males have genotypes of either yy or yb, and blue-throated males are exclusively bb. In females, all individuals with the dominant o allele are orange-throated, while those lacking an o allele develop yellow throats. [14]

Tails

For the side-blotched lizard, limbs serve as an anti-predatory defense – their ability to survive without a tail allows them to escape predation after being caught. While this defense mechanism can be advantageous, the loss of a tail can also negatively impacts a lizard’s survival and reproduction. For the Uta stranburiana, the loss of a tail is accompanied by a loss of social status amongst their peers. This can contribute to them having a hard time acquiring and maintaining a superior home range. The influence of tail loss on survivorship, however, is only significant during conditions of low mortality – when the overall mortality rate of side-blotched lizards is 30-40% higher than average, the condition of the tail does not impact the survival of adults and juveniles. [19] This is because the tails of side-blotched lizards are not energetic lipids stores. As mentioned earlier, lizards that lose their tails are at a greater risk of predation than lizards with their tails intact. Since social status is an important survival mechanism amongst side-blotched lizards, researchers have suggested that the loss of a tail, which contributes to a decrease in social status, forces tailless side-blotched lizards to inhabit more inferior home ranges. Therefore, in addition to losing a physiological defense mechanism when losing their tails, side-blotched lizards are also inclined to inhabit inferior living conditions which bolsters their risk of predation. [20]

Mating

Rock–paper–scissors mechanism

Male side-blotched lizards exhibit distinct polymorphism in their throat colors, and can be divided into three different categories. Each of these three different morphs varies in how it competes for mates, and variation within a breeding population is maintained by a rock paper scissors mechanism of frequency-dependent sexual selection. A cycle is created where the least common morph of one breeding season often has the largest number of mature living offspring in the next year. This is because one morph does particularly well against another, but poorly in comparison to the third. [2]

Female side-blotched lizards have also been shown to exhibit behaviorally correlated differences in throat coloration. Orange-throated females are considered r-strategists. They typically produce large clutches consisting of many small eggs. In contrast, yellow-throated females are K-strategists that lay fewer, larger eggs. Like the male morphs, the frequencies of these two female morphs also cycle with time. However, the cycle is shorter – two years in comparison to the male morphs’ four- or five-year cycle – and is not a result of frequency-dependent sexual selection. Instead, orange-throated females are more successful at lower population densities, where competition for food is less fierce and less selection pressure from predation occurs. [14] When population density is high and or when predators abound, yellow-throated females tend to have higher reproductive success. In general, their larger hatchlings have higher short-term and long-term survival rates, and these advantages are magnified in times of scarcity. Side-blotched lizards show displays and aggression shortly after hatching, and even minute differences in size can lead to increased social dominance and capacity to outcompete the smaller hatchlings. [21]

Reproduction

Image of common side-blotched lizards mating. The male lizard is on the right, and the female lizard is on the left. Utastansburiana.jpg
Image of common side-blotched lizards mating. The male lizard is on the right, and the female lizard is on the left.

Female side-blotched lizards lay clutches with an average of 5.1 eggs and a maximum of 9 eggs in a single clutch. Smaller clutch sizes, often associated with yellow-throated females, have an increased frequency of eggs bursting upon being laid or egg binding, suggesting an upper physiological limit to how much a female can invest in each individual egg she lays. [4]

The presence of a tail on female side-blotched lizards can impact reproduction. Tailless female lizards have reduced overall survivorship due to the increased risk of predation they experience without this physiological defense mechanism. Although tailless female side-blotched lizards experience an increased risk of death, the loss of a tail does not impose an energetic handicap on them that negatively impacts their potential growth and reproduction. Additionally, the lack of a tail in adult males attempting to mate with females during the spring decreases their ability to successfully copulate which suggests that tails are sufficient to increase the likelihood of males attracting sexual partners during reproductive seasons. [22] In addition to the way that physiological traits affect female reproduction, the age of females, the environment they inhabit, and the time in the reproductive season also affect female fecundity. A study conducted by researchers at Utah State University confirmed that older females lay more eggs than yearling females and that the annual variations that have been previously observed in female fecundity are the result of variations in the numbers of clutches (clutch frequency), not by the average size of clutches produced. [23]

As the reproductive season progresses for side-blotched lizards, females tend to produce fewer but larger eggs. Researchers hypothesize that this occurs because of the tradeoff between egg size and clutch size. Later in their reproductive seasons, female lizards are selected to increase their egg size to produce larger and more competitively superior hatchlings because during this time in the season, food is generally more scarce and juvenile density is high. It has also been suggested that selection favors smaller clutches at the end of the reproductive season because females invest their remaining reproductive energy into their last clutches. Therefore, these females want to ensure that this remaining energy was well spent and that her hatchlings will have a good chance of survival. With a decreased clutch size, when the female side-blotched lizard allocates her energy into her last clutch, each hatchling will receive more parental investment from their mother – assuming that the mother’s energy is divided equally among the hatchlings of the smaller clutch. [24] Researchers at Utah State University also verified that clutch frequency is positively correlated with the density of rainfall. Their results indicated that there is a causative association between winter rainfall and clutch frequency for female side-blotched lizards. The researchers suggested that air temperatures play an important role in the timing and deposition of the first spring clutch – that increases in winter rainfall induce earlier clutches in female side-blotched lizards. [23]

Speciation

The "rock-paper-scissors" mating strategy is a genetically-based male polymorphism that has been maintained over millions of years throughout many populations of side-blotched lizard in the United States and Mexico. However, speciation has resulted from the formation of reproductive isolation between populations when a population loses of one or more of the male morphologies. [25] [26] However, speciation due to the loss of a male morph has occurred when populations lose one or more male morphs and become reproductively isolated from populations with the ancestral polymorphism. [27] For side-blotched lizards, the morph lost most commonly is the sneaker male. [27] In other cases, speciation has occurred as a result of hybridization between morphs occurring in response to rapid changes in the environment . [25] [28]

The loss of a male morph can change selection on the remaining morphs. [29]   In side-blotched lizards, for example, female mate preferences change after the loss of a male morph, and alleles that once allowed other male morphs to outcompete the lost morph for mates are no longer as beneficial. [29] These shifts in selection often lead to greater sexual size dimorphism. [29] Larger male and female size regularly follow the loss of a polymorphism, as seen in the side-blotched lizards. [27] Predator-prey dynamic also change after a male morph is lost, with predators evolving to prey on the remaining morphologies. [29]

Behavior

Aggression

Dominant male side-blotched lizards are aggressive in the defense of their territories. Upon spotting another conspecific within their territories, resident individuals enter a state of heightened alertness. They perform one or more "pushups" (vertical bobbing motions), arch their backs, and extend their limbs before approaching the intruder. [13] If the intruder is another male, the resident follows up by rushing, butting, or nipping at the intruder, which will then usually proceed to run away.

Tail length is important in the determination of dominance hierarchies. Like many other lizard species, side-blotched lizards use tail autotomy as an escape mechanism. However, a reduction in tail length also confers a loss of social status for both males and females. [30] Males will autotomize their tails less readily than will females, likely due to the increased importance of social status for males. Subordinate females can still mate, but male reproductive success is directly tied to their social status. [31]

Courtship with aggression

If the intruder is a female, the male resident will initiate courtship, which consists of circling, flank-biting, licking, smelling, shallower head-bobbing, and eventually copulation. Body shape and passivity are the main releasers for courtship activity, and males have been observed in trying to court and copulate with smaller lizards of other species, as well as smaller subordinate side-blotched lizards. [32]

Aggression among different morphs

Side-blotched lizards come in three different morphs; the orange and blue morphs are known to be territorial while the yellow morphs are known to be non-territorial. It is important to understand these differences because the territorial orange and blue morphs rely on spatial processing mechanisms to acquire and defend their territories. This suggests that there are differences in neuronal plasticity across the three morphs in the regions of their brains that are responsible for the processing, recognition, and learning of new spatial information. In a study published by the University of Nevada, researchers confirmed that when territorial side-blotched lizards are placed in larger spaces, the production of new neurons in the region of their brains responsible for spatial learning become stimulated. Interestingly, this does not happen in non-territorial yellow side-blotched lizard morphs which indicates that non-territorial morphs do not have the neuronal capacity to behave territorially in the way that orange and blue morphs can. [33]

The opposing forces of sexual selection and natural selection are important for the maintenance of trait variation in alternative reproductive strategies in side-blotched lizards. The OBY locus that determines throat phenotype in these lizards is an important genetic marker that is influenced by the levels of gonadotropin hormone modulation of testosterone in male side-blotched lizards. Suzanne Mills confirmed that the oo, ob (orange phenotype), and bb (blue phenotype) males are near their physiological and behavioral capacities for reproductive success. On the other hand, yy and by (yellow phenotype) males are below their physiological maximum. The researchers have proposed that although the levels gonadotropins are important for the maintenance of physiological, morphological, and behavioral variation in male side-blotched lizards, they are also responsible for the immunosuppression of sexual signals in yellow-throated side-blotched male lizards. [34]

Spatial processing

Although territorial behaviors are important defining differences between the different morphologies of these lizards, environmental experiences play important roles in the cortical volume of both territorial and non-territorial side-blotched lizards. The phenotypic differences between the different male morphologies of side-blotched lizards can be exacerbated by the experiences that the lizards encounter. LaDage Roth Sinervo et al 2016 confirmed that environmental experiences of both territorial and non-territorial side-blotched lizards affects the cortical volume of their brains. When these lizards grow up in controlled captive environments, the cortical volume of their brains are smaller, regardless of whether they are territorial or not. This is important because spatial recognition and processing occur in the cortical region of their brains and certain behaviors, like territoriality, that are important for survival rely on the recognition of space. Therefore, the experiences that side-blotched lizards have affect their cortical volume and subsequently, their cortical phenotypes. [35] While there is a confirmed relationship between territoriality, spatial informational processing, and neuronal plasticity, researchers have suggested that testosterone plays a role in the regulation of medial cortical volumes. In addition, research has demonstrated that testosterone affects territorial males more significantly than non-territorial males. This is likely because during the reproduction season there is an increase in male territoriality, territory size, and testosterone levels. Although more research is needed to confirm that there is a causative relationship between elevated testosterone levels and increases in territorial behaviors, territorial animals rely on spatial memory to remember the boundaries of their territories which is important for detecting potential female partners that might enter their home space range. [36]

Predation

Side-blotched lizards encounter a plethora of different predators in the wild and they engage in a variety of escape behaviors to avoid predation. In a study published in the Canadian Journal of Zoology, researchers confirmed that these escape behaviors – flight initiation distance, distance fled, and refuge entry – do not differ depending on what type of predator the lizard encounters or whether that predator is relatively abundant in their environment. Side-blotched lizards do, however, tend to escape more directly towards refuge when they encounter predatory lizards while less directly towards refuge when encountering predatory snakes. [37]

Diet and feeding

Side-blotched lizards display feeding behavior which can be influenced by sex or season. In a study conducted by Best et al.., these lizards were found to consume diets largely based upon arthropod populations within the area, within a given season. These populations vary by year, and different arthropod populations will fluctuate seasonally. The study showed a correlation between sex and diet, giving way to a number of theories that speculate why gender has an effect on feeding behavior and diet. One mechanism proposes the behavior differences depend on gender, such as guarding territories and attracting mates, are responsible for, or a contributing factor in, feeding behavior. Alternatively, the sexual difference in feeding behavior could also act in favor of reducing intraspecific competition for resources, with individuals eating prey appropriate for their respective size (ex. small females consuming smaller prey). [38]

Feeding regimes in side-blotched lizards are also influenced by their body temperatures. Waldschmidt, Jones & Porter 1986 confirmed that the body temperature of side-blotched lizards affects their consumption rate of food and the passage time of that ingested food, but body temperature does not affect their digestive coefficient. When the body temperature of the lizard increased between 20 and 36 degrees Celsius, the probability of eating increased curvilinearly while the passage time of ingested food decreased curvilinearly. [39]

Parasites

Like most animals, side-blotched lizards are infected by a variety of parasites. Intestinal parasites include nematodes [40] and cestodes. [41] Blood parasites include members of the Apicomplexa such as Schellackia occidentalis [42] and species of Lankesterella . [43] The tegument is infected by several species of mites. [44] Out of these, Neotrombicula are the most common ectoparasites. [44] The number of Neotrombicula parasites is reduced in populations of side-blotched lizards near wind farms. [17] Parasites can alter metabolism and reproductive success of side-blotched lizards due to body temperature changes in response to fighting the infection. [45]

Related Research Articles

<i>Urosaurus</i> Genus of lizards

Urosaurus is a genus of lizards, commonly known as tree lizards or brush lizards, belonging to the New World family Phrynosomatidae. They are native to North America, specifically the arid and semiarid regions of the western United States and Mexico, spending most of their time on trees, shrubs, or boulders.

Side-blotched lizards are lizards of the genus Uta. They are some of the most abundant and commonly observed lizards in the deserts of western North America, known for cycling between three colorized breeding patterns and is best described in the common side-blotched lizard. They commonly grow to 6 inches including the tail, with the males normally being the larger sex. Males often have bright throat colors.

<i>Anolis carolinensis</i> Species of reptile

Anolis carolinensis or green anole is a tree-dwelling species of anole lizard native to the southeastern United States and introduced to islands in the Pacific and Caribbean. A small to medium-sized lizard, the green anole is a trunk-crown ecomorph and can change its color to several shades from brown to green.

<span class="mw-page-title-main">Western fence lizard</span> Species of lizard

The western fence lizard is a common lizard of Arizona, New Mexico, California, Idaho, Nevada, Oregon, Utah, Washington, Northern Mexico, and the surrounding area. As the ventral abdomen of an adult is characteristically blue, it is also known as the blue-belly. Two western fence lizards have been reported with duplicated or forked tails, presumably following an autotomy.

Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.

<span class="mw-page-title-main">Viviparous lizard</span> Species of lizard

The viviparous lizard, or common lizard, is a Eurasian lizard. It lives farther north than any other species of non-marine reptile, and is named for the fact that it is viviparous, meaning it gives birth to live young. Both "Zootoca" and "vivipara" mean "live birth", in (Latinized) Greek and Latin respectively. It was called Lacerta vivipara until the genus Lacerta was split into nine genera in 2007 by Arnold, Arribas & Carranza.

<i>Podarcis muralis</i> Species of lizard

Podarcis muralis is a species of lizard with a large distribution in Europe and well-established introduced populations in North America, where it is also called the European wall lizard. It can grow to about 20 cm (7.9 in) in total length. The animal has shown variation in the places it has been introduced to. Fossils have been found in a cave in Greece dating to the early part of the Holocene.

<span class="mw-page-title-main">Common collared lizard</span> Species of reptile

The common collared lizard, also commonly called eastern collared lizard, Oklahoma collared lizard, yellow-headed collared lizard, and collared lizard, is a North American species of lizard in the family Crotaphytidae. The common name "collared lizard" comes from the lizard's distinct coloration, which includes bands of black around the neck and shoulders that look like a collar. Males can be very colorful, with blue green bodies, yellow stripes on the tail and back, and yellow orange throats. There are five recognized subspecies.

<i>Urosaurus ornatus</i> Species of lizard

Urosaurus ornatus, commonly known as the ornate tree lizard, is a species of lizard in the family Phrynosomatidae. The species is native to the southwestern United States and northwestern Mexico. The species, which was formerly called simply the "tree lizard", has been used to study physiological changes during the fight-or-flight response as related to stress and aggressive competition. Its life history and costs of reproduction have been documented in field populations in New Mexico and Arizona. This species has been fairly well studied because of its interesting variation in throat color in males that can correlate with different reproductive strategies,

<span class="mw-page-title-main">Eastern fence lizard</span> Species of lizard

The eastern fence lizard is a medium-sized species of lizard in the family Phrynosomatidae. The species is found along forest edges, rock piles, and rotting logs or stumps in the eastern United States. It is sometimes referred to as the prairie lizard, fence swift, gray lizard, gravid lizard, northern fence lizard or pine lizard. It is also referred to colloquially as the horn-billed lizard. One of its most notable behaviors is that of its escape behavior when encountering fire ants, which have been known to invade and negatively affect many of their populations.

<span class="mw-page-title-main">Sagebrush lizard</span> Species of lizard

The sagebrush lizard or sagebrush swift is a common species of phrynosomatid lizard found at mid to high altitudes in the western United States. It belongs to the genus Sceloporus in the Phrynosomatidae family of reptiles. Named after the sagebrush plants near which it is commonly found, the sagebrush lizard has keeled and spiny scales running along its dorsal surface.

<i>Lampropholis delicata</i> Species of lizard

Lampropholis delicata, the delicate skink, dark-flecked garden sun skink, garden skink, delicate garden skink, rainbow skink or plague skink, or the metallic skink is native to Australia and invasive in New Zealand and Hawaii where it is commonly found in gardens. The species is known for their color dimorphism between males and females; striped morphs and non-striped morphs exist in this species, however the stripe is less pronounced in males. This species' diet consists of a wide range of prey, such as spiders, bees, larvae, and termites. Mating occurs in the late summer and generally one clutch of 2 to 4 eggs are laid per year by each female.

<i>Podarcis hispanicus</i> Species of lizard

Podarcis hispanicus, also known as Iberian wall lizard, is a small wall lizard species of the genus Podarcis. It is found in the Iberian peninsula, in northwestern Africa and in coastal districts in Languedoc-Roussillon in France. In Spanish, this lizard is commonly called lagartija Ibérica.

<i>Paracerceis sculpta</i> Species of crustacean

Paracerceis sculpta is a species of marine isopod between 1.3 millimetres (0.05 in) and 10.3 mm (0.41 in) in length. The species lives mainly in the intertidal zone, and is native to the Northeast Pacific from Southern California to Mexico, but has since been introduced to many other countries. Adults are herbivorous and consume algae but juveniles are carnivorous and consume moulting females. They reproduce in sponges but do not feed near them.

<i>Ctenophorus pictus</i> Species of lizard

Ctenophorus pictus, commonly known as the painted ground-dragon or painted dragon, is a species of lizard from the family Agamidae. It is endemic to the drier areas of southern and central Australia.

<span class="mw-page-title-main">Yellow-headed gecko</span> Species of reptile

Gonatodes albogularis, which has been called a number of vernacular names in English, is a smallish species of gecko found in warm parts of Central and South America, Cuba, Hispaniola and Jamaica. They prefer to live in tropical dry forest habitats. It is sexually dimorphic: the male is colourful, while the female is a more drab grey. The fingers do not have lamellar pads for climbing smooth surfaces like many other geckos but instead have normal claws like most lizards. At one time the species had a breeding population in southern Florida, especially Key West, but this population appears to have died out by the early 1990s. They are believed to be able to tell the difference between brightness and hues of conspecifics. Males are incredibly aggressive with territory defense against both other males and potential predators.

<span class="mw-page-title-main">Sexual selection in scaled reptiles</span>

Sexual selection in scaled reptiles studies how sexual selection manifests in snakes and lizards, which constitute the order Squamata of reptiles. Each of the over three thousand snakes use different tactics in acquiring mates. Ritual combat between males for the females they want to mate with includes topping, a behavior exhibited by most viperids in which one male will twist around the vertically elevated fore body of its opponent and forcing it downward. It is common for neck biting to occur while the snakes are entwined.

An alternative mating strategy is a strategy used by male or female animals, often with distinct phenotypes, that differs from the prevailing mating strategy of their sex. Such strategies are diverse and variable both across and within species. Animal sexual behaviour and mate choice directly affect social structure and relationships in many different mating systems, whether monogamous, polygamous, polyandrous, or polygynous. Though males and females in a given population typically employ a predominant reproductive strategy based on the overarching mating system, individuals of the same sex often use different mating strategies. Among some reptiles, frogs and fish, large males defend females, while small males may use sneaking tactics to mate without being noticed.

<i>Ctenophorus decresii</i> Species of lizard

Ctenophorus decresii, also known commonly as the tawny dragon or the tawny crevice-dragon, is a species of lizard in the family Agamidae. The species is endemic to Australia. The average snout-to-vent length (SVL) of the species is 80.76 mm (3.180 in) with larger individuals being around 89 mm (3.5 in) and smaller individuals around 72 mm (2.8 in). The optimal time for mating in this species is two to three weeks after the females emerge from hibernation. Eggs are typically laid from September to October with most of them being laid earlier in the period. C. decresii is known for its variations in throat colours which change based on environmental conditions. Its primary food sources consist of both vegetation and invertebrates, and it prefers to live in rocky habitats.

References

  1. Hammerson, G.A., Frost, D.R. & Santos-Barrera, G. (2007). "Uta stansburiana". IUCN Red List of Threatened Species . 2007. Retrieved 17 May 2014.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 3 4 5 6 7 Sinervo, B.; C.M. Lively (1996). "The rock–paper–scissors game and the evolution of alternative male strategies". Nature. 380 (6571): 240–243. Bibcode:1996Natur.380..240S. doi:10.1038/380240a0. S2CID   205026253.
  3. 1 2 3 Zamudio, Kelly R.; Barry Sinervo (2000). "Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies". PNAS. 97 (26): 14427–14432. Bibcode:2000PNAS...9714427Z. doi: 10.1073/pnas.011544998 . PMC   18935 . PMID   11106369.
  4. 1 2 Sinervo, Barry; Paul Licht (1991). "Proximate Constraints on the Evolution of Egg Size, Number, and Total Clutch Mass in Lizards". Science. 252 (5010): 1300–1302. Bibcode:1991Sci...252.1300S. doi:10.1126/science.252.5010.1300. PMID   17842955. S2CID   37108580.
  5. Moll, Edward (2005). "Uta stansburiana Baird and Girard, 1852 - Common Side-blotched Lizard". Sonoran Herpetologist.
  6. Beolens, Bo; Watkins, Michael; Grayson, Michael (2011). The Eponym Dictionary of Reptiles. Baltimore: Johns Hopkins University Press. xiii + 296 pp. ISBN   978-1-4214-0135-5. (Uta stansburiana, p. 251).
  7. Grismer, L. Lee (1994). "Three New Species of Intertidal Side-Blotched Lizards (Genus Uta) from the Gulf of California, México". Herpetologica. 50 (4): 451–474. JSTOR   3892721.
  8. Upton, Darlene E.; Murphy, Robert W. (1997). "Phylogeny of the side-blotched lizards (Phrynosomatidae: Uta) based on mtDNA sequences: support for midpeninsular seaway in Baja California". Molecular Phylogenetics and Evolution. 8 (1): 104–113. doi:10.1006/mpev.1996.0392. PMID   9242598.
  9. Schmidt, Karl Patterson (1921). "New species of North American lizards of the genera Holbrookia and Uta". American Museum Novitates (22): 1–6. hdl: 2246/4613 .
  10. Collins, Joseph T. (1991). "Viewpoint: a new taxonomic arrangement for some North American amphibians and reptiles" (PDF). Herpetological Review. 22 (2): 42–43. Archived from the original (PDF) on 2007-09-29.
  11. Murphy, Robert W. & Aguirre-León, Gustavo (2002): The Nonavian Reptiles: Origins and Evolution. In: Case, Ted & Cody, Martin (eds.): A New Island Biogeography of the Sea of Cortés: 181-220. Oxford University Press. ISBN   0-19-513346-3 PDF fulltext Appendices 2-4
  12. "Western Side-blotched Lizard - Uta stansburiana elegans". California Herps. californiaherps.com. 2018. Retrieved 2018-08-07.
  13. 1 2 Tinkle, D.W. (1967). "The life and demography of the side-blotched lizard, Uta stansburiana". University of Michigan Museum of Zoology: Miscellaneous Publications (132).
  14. 1 2 3 Alonzo, S.H.; Barry Sinervo (2001). "Mate choice games, context-dependent good genes, and genetic cycles in the side-blotched lizard, Uta stansburiana". Behavioral Ecology and Sociobiology. 49 (2–3): 176–186. doi:10.1007/s002650000265. S2CID   23799664.
  15. Jensen, Forest (November 2017). "Sexual Coloration and Performance Capacity in Male Side-Blotched Lizards (UTA Stansburiana)". Biology Posters. Utah State University.
  16. Waldschmidt, Steve; Tracy, Richard (1983). "Interactions between a Lizard and Its Thermal Environment: Implications for Sprint Performance and Space Utilization in the Lizard Uta Stansburiana". Ecology. 64 (3). John Wiley & Sons: 476–484. Bibcode:1983Ecol...64..476W. doi:10.2307/1939967. JSTOR   1939967.
  17. 1 2 Alaasam, Valentina J.; Keehn, Jade E.; Durso, Andrew M.; French, Susannah S.; Feldman, Chris R. (2021). "Ectoparasite Load Is Reduced in Side-Blotched Lizards (Uta stansburiana) at Wind Farms: Implications for Oxidative Stress". Physiological and Biochemical Zoology. 94 (1): 35–49. doi:10.1086/712100. PMID   33296296. S2CID   228076503.
  18. 1 2 3 4 Sinervo, Barry; Donald B. Miles; W.Anthony Frankino; Matthew Klukowski; Dale F. DeNardo (2000). "Testosterone, Endurance, and Darwinian Fitness: Natural and Sexual Selection on the Physiological Bases of Alternative Male Behaviors in Side-Blotched Lizards". Hormones and Behavior. 38 (4): 222–233. doi:10.1006/hbeh.2000.1622. PMID   11104640. S2CID   5759575.
  19. Althoff, David M.; Thompson, John N. (December 1994). "The effects of tail autotomy on survivorship and body growth of Uta stansburiana under conditions of high mortality". Oecologia. 100 (3): 250–255. Bibcode:1994Oecol.100..250A. doi:10.1007/BF00316952. PMID   28307008. S2CID   7299762.
  20. Wilson, Byron S. (1992). "Tail injuries increase the risk of mortality in free-living lizards (Uta stansburiana)". Oecologia. 92 (1): 145–152. Bibcode:1992Oecol..92..145W. doi:10.1007/BF00317275. PMID   28311825. S2CID   13113025.
  21. Ferguson, Gary W.; Stanley F. Fox (1984). "Annual Variation of Survival Advantage of Large Juvenile Side-Blotched Lizards, Uta stansburiana: Its Causes and Evolutionary Significance". Evolution. 38 (2): 342–349. doi:10.2307/2408492. JSTOR   2408492. PMID   28555919.
  22. Fox, S. F.; McCoy, J. K. (23 February 2000). "The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field". Oecologia. 122 (3): 327–334. Bibcode:2000Oecol.122..327F. doi:10.1007/s004420050038. PMID   28308283. S2CID   25729112.
  23. 1 2 Turner, F. B.; Medica, P. A.; Smith, D. D. (1973). Reproduction and survivorship of the lizard, Uta stansburiana, and the effects of winter rainfall, density and predation on these processes (Report). Research Memorandum RM 73-26. U.S. Fish and Wildlife Service.
  24. Nussbuam, Ronald (1981). "Seasonal Shifts in Clutch Size and Egg Size in the Side-Blotched Lizard, Uta Stansburiana Baird and Girard". Oecologia. 49 (1). Springer: 8–13. Bibcode:1981Oecol..49....8N. doi:10.1007/BF00376891. hdl: 2027.42/47737 . PMID   28309442. S2CID   22402124.
  25. 1 2 Gray, Suzanne M.; McKinnon, Jeffrey S. (February 2007). "Linking color polymorphism maintenance and speciation". Trends in Ecology & Evolution. 22 (2): 71–79. doi:10.1016/j.tree.2006.10.005. PMID   17055107.
  26. Corl, Ammon; Lancaster, Lesley T.; Sinervo, Barry (18 December 2012). "Rapid Formation of Reproductive Isolation between Two Populations of Side-Blotched Lizards, Uta stansburiana". Copeia. 2012 (4): 593–602. doi:10.1643/CH-11-166. S2CID   86230966.
  27. 1 2 3 Corl, Ammon; Davis, Alison R.; Kuchta, Shawn R.; Sinervo, Barry (2 March 2010). "Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation". Proceedings of the National Academy of Sciences. 107 (9): 4254–4259. Bibcode:2010PNAS..107.4254C. doi: 10.1073/pnas.0909480107 . PMC   2840131 . PMID   20160090.
  28. Wellenreuther, Maren; Svensson, Erik I.; Hansson, Bengt (2014). "Sexual selection and genetic colour polymorphisms in animals". Molecular Ecology. 23 (22): 5398–5414. Bibcode:2014MolEc..23.5398W. doi:10.1111/mec.12935. PMID   25251393. S2CID   5504865.
  29. 1 2 3 4 McLean, Claire A.; Stuart-Fox, Devi (November 2014). "Geographic variation in animal colour polymorphisms and its role in speciation". Biological Reviews. 89 (4): 860–873. doi:10.1111/brv.12083. PMID   24528520. S2CID   4664660.
  30. Fox, Stanley F.; Nancy A. Heger; Linda S. Delay (1990). "Social cost of tail loss in Uta stansburiana: lizard tails as status-signalling badges". Animal Behaviour. 39 (3): 549–554. doi:10.1016/S0003-3472(05)80421-X. S2CID   53179644.
  31. Fox, Stanley F.; Jason M. Conder; Allie E. Smith (1998). "Sexual Dimorphism in the Ease of Tail Autotomy: Uta stansburiana with and without Previous Tail Loss". Copeia. 1998 (2): 376–382. doi:10.2307/1447431. JSTOR   1447431.
  32. Ferguson, Gary W. (1966). "Releasers of courtship and territorial behaviour in the side blotched lizard Uta stansburiana". Animal Behaviour. 14 (1): 89–92. doi:10.1016/S0003-3472(66)80015-5. PMID   5918254.
  33. Maged, Roxolana. Effect of Differential Space Use on Medial and Dorsal Cortical Neurogenesis in Side-Blotched Lizard, Uta Stansburiana (Thesis). hdl:11714/524.[ page needed ]
  34. Mills, Suzanne (2008). "Gonadotropin Hormone Modulation of Testosterone, Immune Function, Performance, and Behavioral Trade-Offs among Male Morphs of the Lizard Uta Stansburiana". The American Naturalist. 171 (3): 339–357. doi:10.1086/527520. PMID   18201140. S2CID   24146633.
  35. LaDage, Lara D.; Roth, Timothy C.; Sinervo, Barry; Pravosudov, Vladimir V. (May 2016). "Environmental experiences influence cortical volume in territorial and nonterritorial side-blotched lizards, Uta stansburiana". Animal Behaviour. 115: 11–18. doi: 10.1016/j.anbehav.2016.01.029 . S2CID   54415157.
  36. LaDage, Lara (2017). "Increased Testosterone Decreases Medial Cortical Volume and Neurogenesis in Territorial Side-Blotched Lizards (UTA Stansburiana)". Frontiers in Neuroscience. 11. Frontiers: 97. doi: 10.3389/fnins.2017.00097 . PMC   5331184 . PMID   28298883.
  37. Wagner, E.A.; Zani, P.A. (December 2017). "Escape behavior of Side-blotched Lizards ( Uta stansburiana ) in response to model predators". Canadian Journal of Zoology. 95 (12): 965–973. doi:10.1139/cjz-2016-0255.
  38. Best, Troy L.; A. L. Gennaro (September 1984). "Feeding Ecology of the Lizard, Uta stansburiana, in Southeastern New Mexico". Journal of Herpetology. 18 (3): 291–301. doi:10.2307/1564083. JSTOR   1564083.
  39. Waldschmidt, Steven R.; Jones, Steven M.; Porter, Warren P. (May 1986). "The Effect of Body Temperature and Feeding Regime on Activity, Passage Time, and Digestive Coefficient in the Lizard Uta stansburiana". Physiological Zoology. 59 (3): 376–383. doi:10.1086/physzool.59.3.30156109. S2CID   87385300.
  40. Lyon, R. E (1986). "Helminth parasites of six lizard species from Southern Idaho". Proceedings of the Helminthological Society of Washington. 53 (2): 291–293. INIST   7905398.
  41. Bursey, Charles R.; Goldberg, Stephen R. (2013). "Oochoristica macallisteri sp. n. (Cyclophyllidea: Linstowiidae) from the side-blotched lizard, Uta stansburiana (Sauria: Phrynosomatidae), from California, USA". Folia Parasitologica. 43 (4): 293–296.
  42. Bonorris, Jim S.; Ball, Gordon H. (1955). "Schellackia occidentalis n.sp., a blood-inhabiting coccidian found in lizards in Southern California". Journal of Protozoology. 2 (1): 31–34. doi:10.1111/j.1550-7408.1955.tb02393.x.
  43. Quillfeldt, Petra; Romeike, Tanja; Masello, Juan F.; Reiner, Gerald; Willems, Hermann; Bedolla-Guzmán, Yuliana (2018). "Molecular survey of coccidian infections of the side-blotched lizard Uta stansburiana on San Benito Oeste Island, Mexico". Parasite. 25: 43. doi:10.1051/parasite/2018043. PMC   6092949 . PMID   30109981.
  44. 1 2 Goldberg, Stephen R.; Bursey, Charles R. (1991). "Integumental lesions caused by ectoparasites in a wild population of the side-blotched lizard (Uta stansburiana)". Journal of Wildlife Diseases. 27 (1): 68–73. doi: 10.7589/0090-3558-27.1.68 . PMID   2023329.
  45. Paranjpe, D. A.; Medina, D.; Nielsen, E.; Cooper, R. D.; Paranjpe, S. A.; Sinervo, B. (July 2014). "Does Thermal Ecology Influence Dynamics of Side-Blotched Lizards and Their Micro-Parasites?". Integrative and Comparative Biology. 54 (2): 108–117. doi: 10.1093/icb/icu069 . PMID   24920752.