Pseudocopulation

Last updated
Dasyscolia ciliata.jpg
Dupe: Dasyscolia ciliata , a scoliid wasp, attempting to copulate with a flower of the orchid Ophrys speculum
Ophrys speculum d (cropped).JPG
Mimic: Ophrys speculum , the mirror bee orchid

Pseudocopulation describes behaviors similar to copulation that serve a reproductive function for one or both participants but do not involve actual sexual union between the individuals. It is most generally applied to a pollinator attempting to copulate with a flower. Some flowers mimic a potential female mate visually, but the key stimuli are often chemical and tactile. [1] This form of mimicry in plants is called Pouyannian mimicry. [2]

Contents

In orchids

Several species of orchids mimic insects to facilitate pollination, secreting chemicals from glands (osmophores) in the sepals, petals, or labellum, that are indistinguishable from the insect's natural pheromones. The pollinator then has a pollinium attached to its body, which it transfers to the stigma of another flower when it attempts another 'copulation'. Pollinators are often bees, wasps, or flies. [3]

The cost to the pollinating insects might be seen as negligible, but study of Cryptostylis (an Australian orchid) pollinators shows that they may waste large amounts of sperm by ejaculating onto the flower. Thus there could be antagonistic coevolution such that pollinators become better at identifying their own species correctly and orchids become better mimics. [4]

One mechanism is through the use of incentives or rewards. These are beneficial offerings to a pollinator, enticing it to engage with the reward and thus transfer pollen. Flowering plants that do not produce such rewards can instead attract pollinators through mimicry — a form of convergent evolution. Floral mimicry, which has independently evolved in a diverse range of plant species, involves the imitation of other plants or animals, including of coloration, morphology, egg deposition sites, provoking scents, and mating signals. [5] Such plants are called "deceptive plants" as they mimic the characteristics or rewards of other species without providing any benefit to the pollinator. [6] [7]

Several orchids (Orchidaceae) make use of floral mimicry. Using sex-based deception, these species imitate female mating signals of certain pollinator species. [8] This results in attempted copulation by males of the pollinator species, facilitating pollen transfer. Bee orchids ( Ophrys apifera ) and fly orchids ( Ophrys insectifera ), specifically, utilize flower morphology, coloration, and scent to deceive their respective pollinators. These orchids have evolved traits matching the preferences of specific pollinator niches, leading to adaptive speciation. [9]

Although bee and fly orchids are visual mimics of their pollinators, visual traits are not the only (nor the most important) ones mimicked to increase attraction. [6] Floral odors have been identified as the most prominent way of attracting pollinators, because these odors imitate the sex pheromones of females of the pollinator species. [8] Male pollinators then track these scents over long distances. [6] The proportions of such odor compounds have been found to be varied in different populations of orchids (in a variety of locations), playing a crucial role in attracting specific pollinators at the population level. The evolution of these interactions between plants and pollinators involve natural selection favoring local adaptation, leading to a more precise imitation of the scents produced by local pollinators. [8]

Chemical compounds (more specifically, alkanes and alkenes), while used for sexual deception, are produced in many species of Ophrys, and likely were preadapted for other functions before being co-opted for mimicry. [5] These orchids increased ancestral levels of alkene production to mimic the female pheromones that attract male pollinators, a form of sensory exploitation called a sensory trap. [10]

Although mimetic plants typically receive fewer interactions with pollinators than truly-rewarding plants do, the evolution of sexual deception appears to be linked to benefits associated with mating behavior. Sex-based mimicry results in pollinator fidelity, the continued revisiting of flowers of the same species by a pollinator, as a result of sexual deception. In support of this, sex-based deception in an Australian orchid results in a higher proportion of pollen reaching stigmas than food-based deception. In another study, deception of male pollinators results in a long-distance dispersal of pollen. [6]

See also

Related Research Articles

<i>Ophrys apifera</i> Species of flowering plant in the orchid family Orchidaceae

Ophrys apifera, known in Europe as the bee orchid, is a perennial herbaceous plant of the family Orchidaceae. It serves as an example of sexually deceptive pollination and floral mimicry, as well as of a highly selective and highly evolved plant–pollinator relationship.

<span class="mw-page-title-main">Pollinator</span> Animal that moves pollen from the male anther of a flower to the female stigma

A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains.

<i>Ophrys</i> Genus of orchids

The genus Ophrys is a large group of orchids from the alliance Orchis in the subtribe Orchidinae. They are widespread across much of Europe, North Africa, Caucasus, the Canary Islands, and the Middle East as far east as Turkmenistan.

<span class="mw-page-title-main">Mimicry</span> Imitation of another species for selective advantage

In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. Often, mimicry functions to protect a species from predators, making it an anti-predator adaptation. Mimicry evolves if a receiver perceives the similarity between a mimic and a model and as a result changes its behaviour in a way that provides a selective advantage to the mimic. The resemblances that evolve in mimicry can be visual, acoustic, chemical, tactile, or electric, or combinations of these sensory modalities. Mimicry may be to the advantage of both organisms that share a resemblance, in which case it is a form of mutualism; or mimicry can be to the detriment of one, making it parasitic or competitive. The evolutionary convergence between groups is driven by the selective action of a signal-receiver or dupe. Birds, for example, use sight to identify palatable insects and butterflies, whilst avoiding the noxious ones. Over time, palatable insects may evolve to resemble noxious ones, making them mimics and the noxious ones models. In the case of mutualism, sometimes both groups are referred to as "co-mimics". It is often thought that models must be more abundant than mimics, but this is not so. Mimicry may involve numerous species; many harmless species such as hoverflies are Batesian mimics of strongly defended species such as wasps, while many such well-defended species form Müllerian mimicry rings, all resembling each other. Mimicry between prey species and their predators often involves three or more species.

<span class="mw-page-title-main">Euglossini</span> Tribe of bees

The tribe Euglossini, in the subfamily Apinae, commonly known as orchid bees or euglossine bees, are the only group of corbiculate bees whose non-parasitic members do not all possess eusocial behavior.

<i>Ophrys insectifera</i> Species of flowering plant in the orchid family Orchidaceae

Ophrys insectifera, the fly orchid, is a species of orchid and the type species of the genus Ophrys. It is remarkable as an example of the use of sexually deceptive pollination and floral mimicry, as well as a highly selective and highly evolved plant–pollinator relationship.

<span class="mw-page-title-main">Carrion flower</span> Flowers that smell like rotting flesh

Carrion flowers, also known as corpse flowers or stinking flowers, are mimetic flowers that emit an odor that smells like rotting flesh. Apart from the scent, carrion flowers often display additional characteristics that contribute to the mimesis of a decaying corpse. These include their specific coloration, the presence of setae and orifice-like flower architecture. Carrion flowers attract mostly scavenging flies and beetles as pollinators. Some species may trap the insects temporarily to ensure the gathering and transfer of pollen.

<i>Drakaea</i> Genus of orchids

Drakaea is a genus of 10 species in the plant family Orchidaceae commonly known as hammer orchids. All ten species only occur in the south-west of Western Australia. Hammer orchids are characterised by an insectoid labellum that is attached to a narrow, hinged stem, which holds it aloft. The stem can only hinge backwards, where the broadly winged column carries the pollen and stigma. Each species of hammer orchid is pollinated by a specific species of thynnid wasp. Thynnid wasps are unusual in that the female is flightless and mating occurs when the male carries a female away to a source of food. The labellum of the orchid resembles a female thynnid wasp in shape, colour and scent. Insect pollination involving sexual attraction is common in orchids but the interaction between the male thynnid wasp and the hammer orchid is unique in that it involves the insect trying to fly away with a part of the flower.

Sexual mimicry occurs when one sex mimics the opposite sex in its behavior, appearance, or chemical signalling.

<i>Bombus vestalis</i> Species of bee

Bombus vestalis, the vestal cuckoo bumblebee, is a species of cuckoo bumblebee that lives in most of Europe, as well as North Africa and western Asia. It is a brood parasite that takes over the nests of other bee species. Its primary host is Bombus terrestris. After its initial classification as Psithyrus vestalis, this bumblebee recently was reclassified into the genus Bombus, subgenus Psithyrus.

<span class="mw-page-title-main">Chemical mimicry</span> Biological mimicry using chemicals

Chemical mimicry is a type of biological mimicry involving the use of chemicals to dupe an operator.

<i>Eucera</i> Genus of bees

Eucera is a genus of bees in the family Apidae, which comprises more than 100 species. These bees are commonly known as long-horned bees due to their characteristically long antennae, especially in males. Eucera species can be found in diverse habitats, including meadows, fields, and urban gardens, primarily in the Palearctic and Nearctic regions, covering parts of Europe, Asia, North Africa, and North America.

<span class="mw-page-title-main">Mimicry in plants</span>

In evolutionary biology, mimicry in plants is where a plant organism evolves to resemble another organism physically or chemically, increasing the mimic's Darwinian fitness. Mimicry in plants has been studied far less than mimicry in animals, with fewer documented cases and peer-reviewed studies. However, it may provide protection against herbivory, or may deceptively encourage mutualists, like pollinators, to provide a service without offering a reward in return.

<span class="mw-page-title-main">Pollination trap</span> Plant flower structures

Pollination traps or trap-flowers are plant flower structures that aid the trapping of insects, mainly flies, so as to enhance their effectiveness in pollination. The structures of pollination traps can include deep tubular corollas with downward pointing hairs, slippery surfaces, adhesive liquid, attractants, flower closing and other mechanisms.

<i>Ophrys speculum</i> Species of orchid

Ophrys speculum, the mirror orchid, is a species of Ophrys distributed throughout the Mediterranean that is pollinated exclusively by a single species of scoliid wasp.

<span class="mw-page-title-main">Advertising in biology</span> Use of displays by organisms to signal for selective advantage

Advertising in biology means the use of displays by organisms such as animals and plants to signal their presence for some evolutionary reason.

<i>Argogorytes mystaceus</i> Species of wasp

Argogorytes mystaceus is a species of solitary wasp in the family Crabronidae.

Floral biology is an area of ecological research that studies the evolutionary factors that have moulded the structures, behaviour and physiological aspects involved in the flowering of plants. The field is broad and interdisciplinary and involves research requiring expertise from multiple disciplines that can include botany, ethology, biochemistry, and entomology. A slightly narrower area of research within floral biology is sometimes called pollination biology or anthecology.

<span class="mw-page-title-main">Floral isolation</span>

Floral Isolation is a form of reproductive isolation found in angiosperms. Reproductive isolation is the process of species evolving mechanisms to prevent reproduction with other species. In plants, this is accomplished through the manipulation of the pollinator’s behavior or through morphological characteristics of flowers that favor intraspecific pollen transfer. Preventing interbreeding prevents hybridization and gene flow between the species (introgression), and consequently protects genetic integrity of the species. Reproductive isolation occurs in many organisms, and floral isolation is one form present in plants. Floral isolation occurs prior to pollination, and is divided into two types of isolation: morphological isolation and ethological isolation. Floral isolation was championed by Verne Grant in the 1900s as an important mechanism of reproductive isolation in plants.

<span class="mw-page-title-main">Pollination of orchids</span>

The pollination of orchids is a complex chapter in the biology of this family of plants that are distinguished by the complexity of their flowers and by intricate ecological interactions with their pollinator agents. It has captured the attention of numerous scientists over time, including Charles Darwin, father of the theory of evolution by natural selection. Darwin published in 1862 the first observations of the fundamental role of insects in orchid pollination, in his book The Fertilization of Orchids. Darwin stated that the varied stratagems orchids use to attract their pollinators transcend the imagination of any human being.

References

  1. van der Pijl, Leendert; Dodson, Calaway H. (1966). "Chapter 11: Mimicry and Deception". Orchid Flowers: Their Pollination and Evolution. Coral Gables: University of Miami Press. pp.  129–141. ISBN   0-87024-069-2. OCLC   310489511.
  2. Pasteur, G (1982). "A Classificatory Review of Mimicry Systems". Annual Review of Ecology and Systematics. 13: 169–199. doi:10.1146/annurev.es.13.110182.001125.
  3. Pramanik, Dewi; Dorst, Nemi; Meesters, Niels; Spaans, Marlies; Smets, Erik; Welten, Monique; Gravendeel, Barbara (2020). "Evolution and development of three highly specialized floral structures of bee-pollinated Phalaenopsis species". EvoDevo. 11 (1): 16. doi: 10.1186/s13227-020-00160-z . ISSN   2041-9139. PMC   7418404 . PMID   32793330.
  4. Gaskett, A. C.; Winnick, C. G.; Herberstein, M. E. (2008). "Orchid Sexual Deceit Provokes Ejaculation". The American Naturalist. 171 (6): E206-12. doi:10.1086/587532. PMID   18433329. S2CID   16443767.
  5. 1 2 Schiestl, Florian P; Cozzolino, Salvatore (2008). "Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators". BMC Evolutionary Biology. 8 (1): 27. Bibcode:2008BMCEE...8...27S. doi: 10.1186/1471-2148-8-27 . ISSN   1471-2148. PMC   2267782 . PMID   18226206.
  6. 1 2 3 4 Ellis, Allan G.; Johnson, Steven D. (2010). "Floral Mimicry Enhances Pollen Export: The Evolution of Pollination by Sexual Deceit Outside of the Orchidaceae". The American Naturalist. 176 (5): E143–E151. doi:10.1086/656487. ISSN   0003-0147. PMID   20843263. S2CID   45076899.
  7. Goodrich, Katherine R.; Jürgens, Andreas (2018). "Pollination systems involving floral mimicry of fruit: aspects of their ecology and evolution". New Phytologist. 217 (1): 74–81. doi: 10.1111/nph.14821 . PMID   28980704.
  8. 1 2 3 Vereecken, Nicolas J.; Schiestl, Florian P. (2008-05-27). "The evolution of imperfect floral mimicry". Proceedings of the National Academy of Sciences. 105 (21): 7484–7488. Bibcode:2008PNAS..105.7484V. doi: 10.1073/pnas.0800194105 . ISSN   0027-8424. PMC   2396721 . PMID   18508972.
  9. Schlüter, Philipp M.; Schiestl, Florian P. (2008). "Molecular mechanisms of floral mimicry in orchids". Trends in Plant Science. 13 (5): 228–235. doi:10.1016/j.tplants.2008.02.008. PMID   18424223.
  10. Edwards, David P.; Yu, Douglas W. (2007). "The roles of sensory traps in the origin, maintenance, and breakdown of mutualism". Behavioral Ecology and Sociobiology. 61 (9): 1321–1327. doi:10.1007/s00265-007-0369-3. ISSN   0340-5443. S2CID   43863247.