This article needs additional citations for verification .(April 2007) |
A mating system is a way in which a group is structured in relation to sexual behaviour. The precise meaning depends upon the context. With respect to animals, the term describes which males and females mate under which circumstances. Recognised systems include monogamy, polygamy (which includes polygyny, polyandry, and polygynandry), and promiscuity, all of which lead to different mate choice outcomes and thus these systems affect how sexual selection works in the species which practice them. In plants, the term refers to the degree and circumstances of outcrossing. In human sociobiology, the terms have been extended to encompass the formation of relationships such as marriage.
The primary mating systems in plants are outcrossing (cross-fertilisation), autogamy (self-fertilisation) and apomixis (asexual reproduction without fertilization, but only when arising by modification of sexual function). Mixed mating systems, in which plants use two or even all three mating systems, are not uncommon. [1]
A number of models have been used to describe the parameters of plant mating systems. The basic model is the mixed mating model, which is based on the assumption that every fertilisation is either self-fertilisation or completely random cross-fertilisation. More complex models relax this assumption; for example, the effective selfing model recognises that mating may be more common between pairs of closely related plants than between pairs of distantly related plants. [1]
The following are some of the mating systems generally recognized in animals:
These mating relationships may or may not be associated with social relationships, in which the sexual partners stay together to become parenting partners. As the alternative term "pair bonding" implies, this is usual in monogamy. In many polyandrous systems, the males and the female stay together to rear the young. In polygynous systems where the number of females paired with each male is low and the male will often stay with one female to help rear the young, while the other females rear their young on their own. In polygynandry, each of the males may assist one female; if all adults help rear all the young, the system is more usually called "communal breeding". In highly polygynous systems, and in promiscuous systems, paternal care of young is rare, or there may be no parental care at all.
These descriptions are idealized, and the social partnerships are often easier to observe than the mating relationships. In particular:
Sexual conflict occurs between individuals of different sexes that have separate or conflicting requirements for optimal mating success. This conflict may lead to competitive adaptations and co-adaptations of one or both of the sexes to maintain mating processes that are beneficial to that sex. [8] [9] Intralocus sexual conflict and interlocus sexual conflict describe the genetic influence behind sexual conflict, and are presently recognized as the most basic forms of sexual conflict. [9]
Compared to other vertebrates, where a species usually has a single mating system, humans display great variety. Humans also differ by having formal marriages which in some cultures involve negotiation and arrangement between elder relatives. Regarding sexual dimorphism (see the section about animals above), humans are in the intermediate group with moderate sex differences in body size but with relatively small testes, [10] indicating relatively low sperm competition in socially monogamous and polygynous human societies. One estimate is that 83% of human societies are polygynous, 0.05% are polyandrous, and the rest are monogamous. Even the last group may at least in part be genetically polygynous. [11]
From an evolutionary standpoint, females are more prone to practice monogamy because their reproductive success is based on the resources they are able to acquire through reproduction rather than the quantity of offspring they produce. However, males are more likely to practice polygamy because their reproductive success is based on the amount of offspring they produce, rather than any kind of benefit from parental investment. [12]
Polygyny is associated with an increased sharing of subsistence provided by women. This is consistent with the theory that if women raise the children alone, men can concentrate on the mating effort. Polygyny is also associated with greater environmental variability in the form of variability of rainfall. This may increase the differences in the resources available to men. An important association is that polygyny is associated with a higher pathogen load in an area which may make having good genes in a male increasingly important. A high pathogen load also decreases the relative importance of sororal polygyny which may be because it becomes increasingly important to have genetic variability in the offspring (See Major histocompatibility complex and sexual selection). [11]
Virtually all the terms used to describe animal mating systems were adopted from social anthropology, where they had been devised to describe systems of marriage. This shows that human sexual behavior is unusually flexible since, in most animal species, one mating system dominates. While there are close analogies between animal mating systems and human marriage institutions, these analogies should not be pressed too far, because in human societies, marriages typically have to be recognized by the entire social group in some way, and there is no equivalent process in animal societies. The temptation to draw conclusions about what is "natural" for human sexual behavior from observations of animal mating systems should be resisted: a socio-biologist observing the kinds of behavior shown by humans in any other species would conclude that all known mating systems were natural for that species, depending on the circumstances or on individual differences. [12]
As culture increasingly affects human mating choices, ascertaining what is the 'natural' mating system of the human animal from a zoological perspective becomes increasingly difficult. Some clues can be taken from human anatomy, which is essentially unchanged from the prehistoric past:
Some have suggested that these anatomical factors signify some degree of sperm competition, although others have provided anatomical evidence to suggest that sperm competition risk in humans is low; [10] [13]
Monogamy has evolved multiple times in animals, with homologous brain structures predicting the mating and parental strategies used by them. These homologous structures were brought about by similar mechanisms. Even though there have been many different evolutionary pathways to get to monogamy, all the studied organisms express their genes very similarly in the fore and midbrain, implying a universal mechanism for the evolution of monogamy in vertebrates. [17] While genetics is not the exclusive cause of mating systems within animals, it is influential in many animals, particularly rodents, which have been the most heavily researched. Certain rodents’ mating systems—monogamous, polygynous, or socially monogamous with frequent promiscuity—are correlated with suggested evolutionary phylogenies, where rodents more closely related genetically are more likely to use a similar mating system, suggesting an evolutionary basis. These differences in mating strategy can be traced back to a few significant alleles that affect behaviors that are heavily influential on mating system, such as the alleles responsible for the level of parental care, how animals choose their partner(s), and sexual competitiveness, among others, which are all at least partially influenced by genetics. [18] While these genes may not perfectly correlate with the mating system that animals use, genetics is one factor that may lead to a species or population reproducing using one mating system over another, or even potentially multiple at different locations or points in time.
Mating systems can also have large impacts on the genetics of a population, strongly affecting natural selection and speciation. In plover populations, polygamous species tend to speciate more slowly than monogamous species do. This is likely because polygamous animals tend to move larger distances to find mates, contributing to a high level of gene flow, which can genetically homogenize many nearby subpopulations. Monogamous animals, on the other hand, tend to stay closer to their starting location, not dispersing as much. [19] Because monogamous animals don’t migrate as far, monogamous populations which are geographically closer together tend to reproductively isolate from each other more easily, and thus each subpopulation is more likely to diversify or speciate from the other nearby populations as compared to polygamous populations. In polygamous species, however, the male partner in polygynous species and female partner in polyandrous species often tend to spread further to look for mates, potentially to find more or better mates. The increased level of movement among populations leads to increased gene flow between populations, effectively making geographically distinct populations into genetically similar ones via interbreeding. [20] This has been observed in some species of rodents, where generally promiscuous species were quickly differentiated into monogamous and polygamous taxa by a prominent introduction of monogamous behaviors in some populations of that species, showing the swift evolutionary effects different mating systems can have. Specifically, monogamous populations speciated up to 4.8 times faster and had lower extinction rates than non monogamous populations. [18] Another way that monogamy has the potential to cause increased speciation is because individuals are more selective with partners and competition, causing different nearby populations of the same species to stop interbreeding as much, leading to speciation down the road. [20]
Another potential effect of polyandry in particular is increasing the quality of offspring and reducing the probability of reproductive failure. [21] There are many possible reasons for this, one of the possibilities being that there is greater genetic variation in families because most offspring in a family will have either a different mother or father. [22] This reduces the potential harm done by inbreeding, as siblings will be less closely related and more genetically diverse. Additionally, because of the increased genetic diversity among generations, the levels of reproductive fitness are also more variable, and so it is easier to select for positive traits more quickly, as the difference in fitness between members of the same generation would be greater. When many males are actively mating, polyandry can decrease the risk of extinction as well, as it can increase the effective population size. Increased effective population sizes are more stable and less prone to accumulating deleterious mutations due to genetic drift. [22]
Mating in bacteria involves transfer of DNA from one cell to another and incorporation of the transferred DNA into the recipient bacteria's genome by homologous recombination. Transfer of DNA between bacterial cells can occur in three main ways. First, a bacterium can take up exogenous DNA released into the intervening medium from another bacterium by a process called transformation. DNA can also be transferred from one bacterium to another by the process of transduction, which is mediated by an infecting virus (bacteriophage). The third method of DNA transfer is conjugation, in which a plasmid mediates transfer through direct cell contact between cells.
Transformation, unlike transduction or conjugation, depends on numerous bacterial gene products that specifically interact to perform this complex process, [23] and thus transformation is clearly a bacterial adaptation for DNA transfer. In order for a bacterium to bind, take up and recombine donor DNA into its own chromosome, it must first enter a special physiological state termed natural competence. In Bacillus subtilis about 40 genes are required for the development of competence and DNA uptake. [24] The length of DNA transferred during B. subtilis transformation can be as much as a third and up to the whole chromosome. [25] [26] Transformation appears to be common among bacterial species, and at least 60 species are known to have the natural ability to become competent for transformation. [27] The development of competence in nature is usually associated with stressful environmental conditions, and seems to be an adaptation for facilitating repair of DNA damage in recipient cells. [28]
In several species of archaea, mating is mediated by formation of cellular aggregates. Halobacterium volcanii, an extreme halophilic archaeon, forms cytoplasmic bridges between cells that appear to be used for transfer of DNA from one cell to another in either direction. [29]
When the hyperthermophilic archaea Sulfolobus solfataricus [30] and Sulfolobus acidocaldarius [31] are exposed to the DNA damaging agents UV irradiation, bleomycin or mitomycin C, species-specific cellular aggregation is induced. Aggregation in S. solfataricus could not be induced by other physical stressors, such as pH or temperature shift, [30] suggesting that aggregation is induced specifically by DNA damage. Ajon et al. [31] showed that UV-induced cellular aggregation mediates chromosomal marker exchange with high frequency in S. acidocaldarius. Recombination rates exceeded those of uninduced cultures by up to three orders of magnitude. Frols et al. [30] and Ajon et al. [31] hypothesized that cellular aggregation enhances species-specific DNA transfer between Sulfolobus cells in order to provide increased repair of damaged DNA by means of homologous recombination. This response appears to be a primitive form of sexual interaction similar to the more well-studied bacterial transformation systems that are also associated with species specific DNA transfer between cells leading to homologous recombinational repair of DNA damage.[ citation needed ]
Protists are a large group of diverse eukaryotic microorganisms, mainly unicellular animals and plants, that do not form tissues. Eukaryotes emerged in evolution more than 1.5 billion years ago. [32] The earliest eukaryotes were likely protists. Mating and sexual reproduction are widespread among extant eukaryotes. Based on a phylogenetic analysis, Dacks and Roger [33] proposed that facultative sex was present in the common ancestor of all eukaryotes.
However, to many biologists it seemed unlikely until recently, that mating and sex could be a primordial and fundamental characteristic of eukaryotes. A principal reason for this view was that mating and sex appeared to be lacking in certain pathogenic protists whose ancestors branched off early from the eukaryotic family tree. However, several of these protists are now known to be capable of, or to recently have had, the capability for meiosis and hence mating. To cite one example, the common intestinal parasite Giardia intestinalis was once considered to be a descendant of a protist lineage that predated the emergence of meiosis and sex. However, G. intestinalis was recently found to have a core set of genes that function in meiosis and that are widely present among sexual eukaryotes. [34] These results suggested that G. intestinalis is capable of meiosis and thus mating and sexual reproduction. Furthermore, direct evidence for meiotic recombination, indicative of mating and sexual reproduction, was also found in G. intestinalis. [35] Other protists for which evidence of mating and sexual reproduction has recently been described are parasitic protozoa of the genus Leishmania , [36] Trichomonas vaginalis , [37] and acanthamoeba. [38]
Protists generally reproduce asexually under favorable environmental conditions, but tend to reproduce sexually under stressful conditions, such as starvation or heat shock.[ citation needed ]
Both animal viruses and bacterial viruses (bacteriophage) are able to undergo mating. When a cell is mixedly infected by two genetically marked viruses, recombinant virus progeny are often observed indicating that mating interaction had occurred at the DNA level. Another manifestation of mating between viral genomes is multiplicity reactivation (MR). MR is the process by which at least two virus genomes, each containing inactivating genome damage, interact with each other in an infected cell to form viable progeny viruses. The genes required for MR in bacteriophage T4 are largely the same as the genes required for allelic recombination. [39] Examples of MR in animal viruses are described in the articles Herpes simplex virus , Influenza A virus , Adenoviridae , Simian virus 40 , Vaccinia virus , and Reoviridae .
Reproduction is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. There are two forms of reproduction: asexual and sexual.
Sex is the biological trait that determines whether a sexually reproducing organism produces male or female gametes. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent. By convention, organisms that produce smaller, more mobile gametes are called male, while organisms that produce larger, non-mobile gametes are called female. An organism that produces both types of gamete is hermaphrodite.
Behavioral ecology, also spelled behavioural ecology, is the study of the evolutionary basis for animal behavior due to ecological pressures. Behavioral ecology emerged from ethology after Niko Tinbergen outlined four questions to address when studying animal behaviors: What are the proximate causes, ontogeny, survival value, and phylogeny of a behavior?
In biology, mating is the pairing of either opposite-sex or hermaphroditic organisms for the purposes of sexual reproduction. Fertilization is the fusion of two gametes. Copulation is the union of the sex organs of two sexually reproducing animals for insemination and subsequent internal fertilization. Mating may also lead to external fertilization, as seen in amphibians, fishes and plants. For most species, mating is between two individuals of opposite sexes. However, for some hermaphroditic species, copulation is not required because the parent organism is capable of self-fertilization (autogamy); for example, banana slugs.
Voles are small rodents that are relatives of lemmings and hamsters, but with a stouter body; a longer, hairy tail; a slightly rounder head; smaller eyes and ears; and differently formed molars. They are sometimes known as meadow mice or field mice in North America.
The house mouse is a small mammal of the order Rodentia, characteristically having a pointed snout, large rounded ears, and a long and almost hairless tail. It is one of the most abundant species of the genus Mus. Although a wild animal, the house mouse has benefited significantly from associating with human habitation to the point that truly wild populations are significantly less common than the semi-tame populations near human activity.
Evolution of sexual reproduction describes how sexually reproducing animals, plants, fungi and protists could have evolved from a common ancestor that was a single-celled eukaryotic species. Sexual reproduction is widespread in eukaryotes, though a few eukaryotic species have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals routinely reproduce asexually without entirely having lost sex. The evolution of sexual reproduction contains two related yet distinct themes: its origin and its maintenance. Bacteria and Archaea (prokaryotes) have processes that can transfer DNA from one cell to another, but it is unclear if these processes are evolutionarily related to sexual reproduction in Eukaryotes. In eukaryotes, true sexual reproduction by meiosis and cell fusion is thought to have arisen in the last eukaryotic common ancestor, possibly via several processes of varying success, and then to have persisted.
Animal sexual behaviour takes many different forms, including within the same species. Common mating or reproductively motivated systems include monogamy, polygyny, polyandry, polygamy and promiscuity. Other sexual behaviour may be reproductively motivated or non-reproductively motivated.
Haplodiploidy is a sex-determination system in which males develop from unfertilized eggs and are haploid, and females develop from fertilized eggs and are diploid. Haplodiploidy is sometimes called arrhenotoky.
Monogamous pairing in animals refers to the natural history of mating systems in which species pair bond to raise offspring. This is associated, usually implicitly, with sexual monogamy.
Extra-pair copulation (EPC) is a mating behaviour in monogamous species. Monogamy is the practice of having only one sexual partner at any one time, forming a long-term bond and combining efforts to raise offspring together; mating outside this pairing is extra-pair copulation. Across the animal kingdom, extra-pair copulation is common in monogamous species, and only a very few pair-bonded species are thought to be exclusively sexually monogamous. EPC in the animal kingdom has mostly been studied in birds and mammals. Possible benefits of EPC can be investigated within non-human species, such as birds.
Parthenogenesis is a natural form of asexual reproduction in which the embryo develops directly from an egg without need for fertilization. In animals, parthenogenesis means development of an embryo from an unfertilized egg cell. In plants, parthenogenesis is a component process of apomixis. In algae, parthenogenesis can mean the development of an embryo from either an individual sperm or an individual egg.
The sexy son hypothesis in evolutionary biology and sexual selection, proposed by Patrick J. Weatherhead and Raleigh J. Robertson of Queen's University in Kingston, Ontario in 1979, states that a female's ideal mate choice among potential mates is one whose genes will produce males with the best chance of reproductive success. This implies that other benefits the father can offer the mother or offspring are less relevant than they may appear, including his capacity as a parental caregiver, territory and any nuptial gifts. Fisher's principle means that the sex ratio is always near 1:1 between males and females, yet what matters most are her "sexy sons'" future breeding successes, more likely if they have a promiscuous father, in creating large numbers of offspring carrying copies of her genes. This sexual selection hypothesis has been researched in species such as the European pied flycatcher.
The polygyny threshold model is an evolutionary explanation of polygyny, the mating of one male of a species with more than one female. The model shows how females may gain a higher level of biological fitness by mating with a male who already has a mate. The female makes this choice despite other surrounding males because the choice male's genetics, territory, food supply, or other important characteristics are better than those of his competitors, even with two females on the territory.
Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.
Monogamy is a relationship of two individuals in which they form a mutual and exclusive intimate partnership. Having only one partner at any one time, whether that be for life or whether that be serial monogamy, contrasts with various forms of non-monogamy. More generally, the term is used to describe the behavioral ecology and sexual selection of animal mating systems, referring to the state of having only one mate at any one given time. In a human cultural context, monogamy typically refers to the custom of two individuals, regardless of orientation, committing to a sexually exclusive relationship.
Bateman's principle, in evolutionary biology, is that in most species, variability in reproductive success is greater in males than in females. It was first proposed by Angus John Bateman (1919–1996), an English geneticist. Bateman suggested that, since males are capable of producing millions of sperm cells with little effort, while females invest much higher levels of energy in order to nurture a relatively small number of eggs, the female plays a significantly larger role in their offspring's reproductive success. Bateman's paradigm thus views females as the limiting factor of parental investment, over which males will compete in order to copulate successfully.
Polygyny is a mating system in which one male lives and mates with multiple females but each female only mates with a few males. Systems where several females mate with several males are defined either as promiscuity or polygynandry. Lek mating is frequently regarded as a form of polygyny, because one male mates with many females, but lek-based mating systems differ in that the male has no attachment to the females with whom he mates, and that mating females lack attachment to one another.
Social monogamy in mammals is defined as sexually mature adult organisms living in pairs. While there are many definitions of social monogamy, this social organization can be found in invertebrates, reptiles and amphibians, fish, birds, mammals, and humans.
In behavioral ecology, polyandry is a class of mating system where one female mates with several males in a breeding season. Polyandry is often compared to the polygyny system based on the cost and benefits incurred by members of each sex. Polygyny is where one male mates with several females in a breeding season . A common example of polyandrous mating can be found in the field cricket of the invertebrate order Orthoptera. Polyandrous behavior is also prominent in many other insect species, including the red flour beetle, the adzuki bean weevil, and the species of spider Stegodyphus lineatus. Polyandry also occurs in some primates such as marmosets, mammal groups, the marsupial genus' Antechinus and bandicoots, around 1% of all bird species, such as jacanas and dunnocks, insects such as honeybees, and fish such as pipefish.