Apomixis

Last updated
Vegetative apomixis in Poa bulbosa; bulbils form instead of flowers Poa bulbosa, vegetative apomixis.jpg
Vegetative apomixis in Poa bulbosa ; bulbils form instead of flowers

In botany, apomixis is asexual development of seed or embryo without fertilization. However, other definitions include replacement of the seed by a plantlet or replacement of the flower by bulbils.

Contents

Apomictically produced offspring are genetically identical to the parent plant, except Nonrecurrent apomixis. Its etymology is Greek for "away from" + "mixing".

Normal asexual reproduction of plants, such as propagation from cuttings or leaves, has never been considered to be apomixis. In contrast to parthenocarpy , which involves seedless fruit formation without fertilization, apomictic fruits have viable seeds containing a proper embryo, with asexual origin.

In flowering plants, the term "apomixis" is used in a restricted sense to mean agamospermy, i.e., clonal reproduction through seeds. Although agamospermy could theoretically occur in gymnosperms, it appears to be absent in that group. [1]

Apogamy is a related term that has had various meanings over time. In plants with independent gametophytes (notably ferns), the term is still used interchangeably with "apomixis", and both refer to the formation of sporophytes by parthenogenesis of gametophyte cells.

Male apomixis (paternal apomixis) involves replacement of the genetic material of an egg by the genetic material of the pollen.

Some authors included all forms of asexual reproduction within apomixis, but that generalization of the term has since died out. [1]

Evolution

Because apomictic plants are genetically identical from one generation to the next, each lineage has some of the characters of a true species, maintaining distinctions from other apomictic lineages within the same genus, while having much smaller differences than is normal between species of most genera. They are therefore often called microspecies. In some genera, it is possible to identify and name hundreds or even thousands of microspecies, which may be grouped together as species aggregates, typically listed in floras with the convention "Genus species agg." (such as the bramble, Rubus fruticosus agg.). In some plant families, genera with apomixis are quite common, for example in Asteraceae, Poaceae, and Rosaceae. Examples of apomixis can be found in the genera Crataegus (hawthorns), Amelanchier (shadbush), Sorbus (rowans and whitebeams), Rubus (brambles or blackberries), Poa (meadow grasses), Nardus stricta (matgrass), Hieracium (hawkweeds) and Taraxacum (dandelions). Apomixis is reported to occur in about 10% of globally extant ferns. [2] Among polystichoid ferns, apomixis evolved several times independently in three different clades. [2]

Although the evolutionary advantages of sexual reproduction are lost, apomixis can pass along traits fortuitous for evolutionary fitness. As Jens Clausen put it: [3] :470

The apomicts actually have discovered the effectiveness of mass production long before Mr.  Henry Ford applied it to the production of the automobile. ... Facultative apomixis ... does not prevent variation; rather, it multiplies certain varietal products.

Facultative apomixis means that apomixis does not always occur, i.e., sexual reproduction can also happen. It appears likely that all apomixis in plants is facultative; [4] [5] in other words, that "obligate apomixis" is an artifact of insufficient observation (missing uncommon sexual reproduction).

Apogamy and apospory in non-flowering plants

The gametophytes of bryophytes, and less commonly ferns and lycopods can develop a group of cells that grow to look like a sporophyte of the species but with the ploidy level of the gametophyte, a phenomenon known as apogamy. The sporophytes of plants of these groups may also have the ability to form a plant that looks like a gametophyte but with the ploidy level of the sporophyte, a phenomenon known as apospory. [6] [7]

See also androgenesis and androclinesis described below, a type of male apomixis that occurs in a conifer, Cupressus dupreziana .

In flowering plants (angiosperms)

Agamospermy, asexual reproduction through seeds, occurs in flowering plants through many different mechanisms [4] and a simple hierarchical classification of the different types is not possible. Consequently, there are almost as many different usages of terminology for apomixis in angiosperms as there are authors on the subject. For English speakers, Maheshwari 1950 [8] is very influential. German speakers might prefer to consult Rutishauser 1967. [9] Some older text books [10] on the basis of misinformation (that the egg cell in a meiotically unreduced gametophyte can never be fertilized) attempted to reform the terminology to match the term parthenogenesis as it is used in zoology, and this continues to cause much confusion.

Agamospermy occurs mainly in two forms: In gametophytic apomixis, the embryo arises from an unfertilized egg cell (i.e. by parthenogenesis) in a gametophyte that was produced from a cell that did not complete meiosis. In adventitious embryony (sporophytic apomixis), an embryo is formed directly (not from a gametophyte) from nucellus or integument tissue (see nucellar embryony).

Types in flowering plants

Caribbean agave producing plantlets on the old flower stem. Agave angustifolia (Caribbean Agave) in Hyderabad W IMG 8660.jpg
Caribbean agave producing plantlets on the old flower stem.

Maheshwari [8] used the following simple classification of types of apomixis in flowering plants:

Types of gametophytic apomixis

Gametophytic apomixis in flowering plants develops in several different ways. [11] A megagametophyte develops with an egg cell within it that develops into an embryo through parthenogenesis. The central cell of the megagametophyte may require fertilization to form the endosperm, pseudogamous gametophytic apomixis, or in autonomous gametophytic apomixis endosperm fertilization is not required.

  • In diplospory (also called generative apospory), the megagametophyte arises from a cell of the archesporium.
  • In apospory (also called somatic apospory), the megagametophyte arises from some other (somatic) cell of the nucellus.

Considerable confusion has resulted because diplospory is often defined to involve the megaspore mother cell only, but a number of plant families have a multicellular archesporium and the megagametophyte could originate from another archesporium cell.

Diplospory is further subdivided according to how the megagametophyte forms:

  • Allium odorumA. nutans type. The chromosomes double (endomitosis) and then meiosis proceeds in an unusual way, with the chromosome copies pairing up (rather than the original maternal and paternal copies pairing up).
  • Taraxacum type: Meiosis I fails to complete, meiosis II creates two cells, one of which degenerates; three mitotic divisions form the megagametophyte.
  • Ixeris type: Meiosis I fails to complete; three rounds of nuclear division occur without cell-wall formation; wall formation then occurs.
  • Blumea Elymus types: A mitotic division is followed by degeneration of one cell; three mitotic divisions form the megagametophyte.
  • Antennaria Hieracium types: three mitotic divisions form the megagametophyte.
  • Eragrostis Panicum types: Two mitotic division give a 4-nucleate megagametophyte, with cell walls to form either three or four cells.

Incidence in flowering plants

Apomixis occurs in at least 33 families of flowering plants, and has evolved multiple times from sexual relatives. [12] [13] Apomictic species or individual plants often have a hybrid origin, and are usually polyploid. [13]

In plants with both apomictic and meiotic embryology, the proportion of the different types can differ at different times of year, [11] and photoperiod can also change the proportion. [11] It appears unlikely that there are any truly completely apomictic plants, as low rates of sexual reproduction have been found in several species that were previously thought to be entirely apomictic. [11]

The genetic control of apomixis can involve a single genetic change that affects all the major developmental components, formation of the megagametophyte, parthenogenesis of the egg cell, and endosperm development. [14] However, the timing of the various developmental processes is critical to successful development of an apomictic seed, and the timing can be affected by multiple genetic factors. [14]

The first process is a natural one. It may also be referred to as male apomixis or paternal apomixis. It involves fusion of the male and female gametes and replacement of the female nucleus by the male nucleus. This has been noted as a rare phenomenon in many plants (e.g. Nicotiana and Crepis ), and occurs as the regular reproductive method in the Saharan Cypress, Cupressus dupreziana . [15] [16] [17] Recently, the first example of natural androgenesis in a vertebrate, a fish, Squalius alburnoides was discovered. [18] It is also known in invertebrates, particularly clams in the genus Corbicula, and these asexually reproducing males are noted to have a wider range than their noninvasive non-hermaphroditic cousins, more similar to hermaphroditic invasive species in the genus, indicating that this does sometimes have evolutionary benefits. [19]
The second process that is referred to as androgenesis or androclinesis involves (artificial) culture of haploid plants from anther tissue or microspores. [20] Androgenesis has also been artificially induced in fish. [21]

See also

Related Research Articles

<span class="mw-page-title-main">Asexual reproduction</span> Reproduction without a sexual process

Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent and thus the newly created individual is genetically and physically similar to the parent or an exact clone of the parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many eukaryotic organisms including plants, animals, and fungi can also reproduce asexually. In vertebrates, the most common form of asexual reproduction is parthenogenesis, which is typically used as an alternative to sexual reproduction in times when reproductive opportunities are limited. Komodo dragons and some monitor lizards can reproduce asexually.

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Meiosis</span> Cell division producing haploid gametes

Meiosis is a special type of cell division of germ cells and apicomplexans in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one copy of each chromosome (haploid). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and a female will fuse to create a zygote, a cell with two copies of each chromosome again.

<span class="mw-page-title-main">Zygote</span> Diploid eukaryotic cell formed by fertilization between two gametes

A zygote is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual organism. The sexual fusion of haploid cells is called karyogamy, the result of which is the formation of a diploid cell called the zygote or zygospore.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<span class="mw-page-title-main">Gametogenesis</span> Biological process

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis. For example, plants produce gametes through mitosis in gametophytes. The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

<span class="mw-page-title-main">Biological life cycle</span> Series of stages of an organism

In biology, a biological life cycle is a series of stages of the life of an organism, that begins as a zygote, often in an egg, and concludes as an adult that reproduces, producing an offspring in the form of a new zygote which then itself goes through the same series of stages, the process repeating in a cyclic fashion.

<span class="mw-page-title-main">Sporophyte</span> Diploid multicellular stage in the life cycle of a plant or alga

A sporophyte is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase.

<span class="mw-page-title-main">Ovule</span> Female plant reproductive structure

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus, and the female gametophyte in its center. The female gametophyte — specifically termed a megagametophyte— is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule.On the basis of the relative position of micropyle, body of the ovule, chalaza and funicle, there are six types of ovules . (a) Orthotropous ovule - the micropyle, chalaza and funicle all lie in the same straight line, this is the most primitive type of ovule . Eg: Piper, polygonum and cycas.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization or Double fertilisation is a complex fertilization mechanism of flowering plants (angiosperms). This process involves the joining of a female gametophyte with two male gametes (sperm). It begins when a pollen grain adheres to the stigma of the carpel, the female reproductive structure of a flower. The pollen grain then takes in moisture and begins to germinate, forming a pollen tube that extends down toward the ovary through the style. The tip of the pollen tube then enters the ovary and penetrates through the micropyle opening in the ovule. The pollen tube proceeds to release the two sperm in the embryo sacs.

<span class="mw-page-title-main">Megaspore</span> Large spore in heterosporous plants that germinates into a female gametophyte

Megaspores, also called macrospores, are a type of spore that is present in heterosporous plants. These plants have two spore types, megaspores and microspores. Generally speaking, the megaspore, or large spore, germinates into a female gametophyte, which produces egg cells. These are fertilized by sperm produced by the male gametophyte developing from the microspore. Heterosporous plants include seed plants, water ferns (Salviniales), spikemosses (Selaginellaceae) and quillworts (Isoetaceae).

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

Megagametogenesis is the process of maturation of the female gametophyte, or megagametophyte, in plants. During the process of megagametogenesis, the megaspore, which arises from megasporogenesis, develops into the embryo sac, which is where the female gamete is housed. These megaspores then develop into the haploid female gametophytes. This occurs within the ovule, which is housed inside the ovary.

<span class="mw-page-title-main">Nucellar embryony</span>

Nucellar embryony is a form of seed reproduction that occurs in certain plant species, including many citrus varieties. Nucellar embryony is a type of apomixis, where eventually nucellar embryos from the nucellus tissue of the ovule are formed, independent of meiosis and sexual reproduction. During the development of seeds in plants that possess this genetic trait, the nucellus tissue which surrounds the megagametophyte can produce nucellar cells, also termed initial cells. These additional embryos (polyembryony) are genetically identical to the parent plant, rendering them as clones. By contrast, zygotic seedlings are sexually produced and inherit genetic material from both parents. Most angiosperms reproduce sexually through double fertilization. Different from nucellar embryony, double fertilization occurs via the syngamy of sperm and egg cells, producing a triploid endosperm and a diploid zygotic embryo. In nucellar embryony, embryos are formed asexually from the nucellus tissue. Zygotic and nucellar embryos can occur in the same seed (monoembryony), and a zygotic embryo can divide to produce multiple embryos. The nucellar embryonic initial cells form, divide, and expand. Once the zygotic embryo becomes dominant, the initial cells stop dividing and expanding. Following this stage, the zygotic embryo continues to develop and the initial cells continue to develop as well, forming nucellar embryos. The nucellar embryos generally end up outcompeting the zygotic embryo, rending the zygotic embryo dormant. The polyembryonic seed is then formed by the many adventitious embryos within the ovule. The nucellar embryos produced via apomixis inherit its mother's genetics, making them desirable for citrus propagation, research, and breeding.

<span class="mw-page-title-main">Parthenogenesis</span> Asexual reproduction without fertilization

Parthenogenesis is a natural form of asexual reproduction in which growth and development of an embryo occur directly from an egg, without need for fertilisation. In animals, parthenogenesis means development of an embryo from an unfertilized egg cell. In plants, parthenogenesis is a component process of apomixis. In algae, parthenogenesis can mean the development of an embryo from either an individual sperm or an individual egg.

Sporogenesis is the production of spores in biology. The term is also used to refer to the process of reproduction via spores. Reproductive spores were found to be formed in eukaryotic organisms, such as plants, algae and fungi, during their normal reproductive life cycle. Dormant spores are formed, for example by certain fungi and algae, primarily in response to unfavorable growing conditions. Most eukaryotic spores are haploid and form through cell division, though some types are diploid sor dikaryons and form through cell fusion.we can also say this type of reproduction as single pollination

<span class="mw-page-title-main">Embryonic sac</span>

A megaspore mother cell, or megasporocyte, is a diploid cell in plants in which meiosis will occur, resulting in the production of four haploid megaspores. At least one of the spores develop into haploid female gametophytes (megagametophytes). The megaspore mother cell arises within the megasporangium tissue.

<span class="mw-page-title-main">Sexual reproduction</span> Biological process

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

Pseudogamy refers to aspects of reproduction. It has different meanings in zoology and in botany.

Androgenesis occurs when a zygote is produced with only paternal nuclear genes. During standard sexual reproduction, one female and one male parent each produce haploid gametes, which recombine to create offspring with genetic material from both parents. However, in androgenesis, there is no recombination of maternal and paternal chromosomes, and only the paternal chromosomes are passed down to the offspring. The offspring produced in androgenesis will still have maternally inherited mitochondria, as is the case with most sexually reproducing species.

References

  1. 1 2 Bicknell, Ross A.; Koltunow, Anna M. (2004). "Understanding Apomixis: Recent Advances and Remaining Conundrums". The Plant Cell. 16 (suppl 1): S228–S245. doi:10.1105/tpc.017921. PMC   2643386 . PMID   15131250.
  2. 1 2 Liu, Hong-Mei; Dyer, Robert J.; Guo, Zhi-You; Meng, Zhen; Li, Jian-Hui; Schneider, Harald (2012-11-05). "The Evolutionary Dynamics of Apomixis in Ferns: A Case Study from Polystichoid Ferns". Journal of Botany. 2012: 1–11. doi: 10.1155/2012/510478 . ISSN   2090-0120.
  3. Clausen, J. (1954). "Partial apomixis as an equilibrium system". Caryologia. 1954, Supplement: 469–479.
  4. 1 2 Savidan, Y.H. (2000). "Apomixis: genetics and breeding". Plant Breeding Reviews. Vol. 18. pp. 13–86. doi:10.1002/9780470650158.ch2. ISBN   9780470650158.
  5. Anna Verena Reutemann; Ana Isabel Honfi; Piyal Karunarathne; Fabiana Eckers; Diego Hernan Hojsgaard; Eric Javier Martínez (21 June 2022). "Variation of Residual Sexuality Rates along Reproductive Development in Apomictic Tetraploids of Paspalum". Plants. 11 (13): 1639. doi: 10.3390/PLANTS11131639 . ISSN   2223-7747. PMC   9269205 . PMID   35807591. Wikidata   Q115563996.
  6. Steil, W.N. (1939). "Apogamy, apospory, and parthenogenesis in the Pteridophytes". The Botanical Review. 5 (8): 433–453. Bibcode:1939BotRv...5..433S. doi:10.1007/bf02878704. S2CID   19209851.
  7. Niklas, K.J. (1997). The evolutionary biology of plants. Chicago: The University of Chicago press. ISBN   9780226580838.
  8. 1 2 Maheshwari, P. 1950. An introduction to the embryology of the angiosperms. McGraw-Hill, New York.
  9. 1 2 Rutishauser, A. 1969. Embryologie und Fortpflanzungsbiologie der Angiospermen: eine Einführung. Springer-Verlag, Wien.
  10. Fitting, H., et al. 1930. Textbook of botany (Strasburger's textbook of botany, rewritten). Macmillan, London.
  11. 1 2 3 4 Nogler, G.A. 1984. Gametophytic apomixis. In Embryology of angiosperms. Edited by B.M. Johri. Springer, Berlin, Germany. pp. 475–518.
  12. Carman, J.G. (1997). "Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony". Biological Journal of the Linnean Society. 61 (1): 51–94. doi: 10.1111/j.1095-8312.1997.tb01778.x .
  13. 1 2 Nygren, A. (1967). "Apomixis in the angiosperms". In W. Ruhland (ed.). Handbuch der Pflanzenphysiologie. Vol. 18. Berlin: Springer-Verlag. pp. 551–596.
  14. 1 2 Koltunow, A.M.; Johnson, S.D.; Bicknell, R.A. (2000). "Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy". Sexual Plant Reproduction. 12 (5): 253–266. doi:10.1007/s004970050193. S2CID   23186733.
  15. Christian Pichot; Benjamin Liens; Juana L. Rivera Nava; Julien B. Bachelier; Mohamed El Maâtaoui (January 2008). "Cypress Surrogate Mother Produces Haploid Progeny From Alien Pollen". Genetics. 178 (1): 379–383. doi:10.1534/genetics.107.080572. PMC   2206086 . PMID   18202380.
  16. Christian Pichot; Bruno Fady; Isabelle Hochu (2000). "Lack of mother tree alleles in zymograms of Cupressus dupreziana A. Camus embryos". Annals of Forest Science. 57 (1): 17–22. Bibcode:2000AnFSc..57...17P. doi: 10.1051/forest:2000108 .
  17. Pichot, C.; El Maataoui, M.; Raddi, S.; Raddi, P. (2001). "Conservation: Surrogate mother for endangered Cupressus". Nature. 412 (6842): 39. doi: 10.1038/35083687 . PMID   11452293. S2CID   39046191.
  18. Morgado-Santos, Miguel; Carona, Sara; Vicente, Luís; Collares-Pereira, Maria João (2017). "First empirical evidence of naturally occurring androgenesis in vertebrates". Royal Society Open Science. 4 (5): 170200. Bibcode:2017RSOS....470200M. doi: 10.1098/rsos.170200 . PMC   5451830 . PMID   28573029.
  19. Pigneur, L.-M.; Hedtke, S. M.; Etoundi, E.; Van Doninck, K. (June 2012). "Androgenesis: a review through the study of the selfish shellfish Corbicula spp". Heredity. 108 (6): 581–591. doi: 10.1038/hdy.2012.3 . ISSN   1365-2540. PMC   3356815 . PMID   22473310.
  20. 1 2 Solntzeva, M.P. (2003). "About some terms of apomixis: pseudogamy and androgenesis". Biologia. 58 (1): 1–7.
  21. Grunina, A. S.; Recoubratsky, A. V. (1 July 2005). "Induced Androgenesis in Fish: Obtaining Viable Nucleocytoplasmic Hybrids". Russian Journal of Developmental Biology. 36 (4): 208–217. doi:10.1007/s11174-005-0035-5. ISSN   1608-3326. PMID   16208936. S2CID   11750658.
  22. Defining species: a sourcebook from antiquity to today, by John S. Wilkins, ISBN   1433102161, 2009, pp. 122, 194

Further reading