Nucellar embryony

Last updated
Figure 1. depicts the process of nucellar embryony. A) begins with megaspore formation. B) shows the nucellus and forming of cells, nucellar embryonic initial cells, from the nucellus tissue. These initial cells form, divide, and expand. C) The nucellar embryos are developed. If and when a zygote is present, the nucellar embryos supersede the zygote. D) The presence of extra embryos formed from the nucellar tissue gives rise to polyembryonic seeds. E) Polyembryonic seeds germinate and develop. Figure 1. Nucellar Embryony Process.jpg
Figure 1. depicts the process of nucellar embryony. A) begins with megaspore formation. B) shows the nucellus and forming of cells, nucellar embryonic initial cells, from the nucellus tissue. These initial cells form, divide, and expand. C) The nucellar embryos are developed. If and when a zygote is present, the nucellar embryos supersede the zygote. D) The presence of extra embryos formed from the nucellar tissue gives rise to polyembryonic seeds. E) Polyembryonic seeds germinate and develop.
Most commercial citrus varieties produce mainly nucellar seedlings. Citrus fruits.jpg
Most commercial citrus varieties produce mainly nucellar seedlings.

Nucellar embryony (notated Nu+) is a form of seed reproduction that occurs in certain plant species, including many citrus varieties. Nucellar embryony is a type of apomixis, where eventually nucellar embryos from the nucellus tissue of the ovule are formed, independent of meiosis and sexual reproduction. [1] During the development of seeds in plants that possess this genetic trait, the nucellus tissue which surrounds the megagametophyte can produce nucellar cells, also termed initial cells. These additional embryos (polyembryony) are genetically identical to the parent plant, rendering them as clones. By contrast, zygotic seedlings are sexually produced and inherit genetic material from both parents. Most angiosperms reproduce sexually through double fertilization. Different from nucellar embryony, double fertilization occurs via the syngamy of sperm and egg cells, producing a triploid endosperm and a diploid zygotic embryo. In nucellar embryony, embryos are formed asexually from the nucellus tissue. Zygotic and nucellar embryos can occur in the same seed (monoembryony), and a zygotic embryo can divide to produce multiple embryos. [2] The nucellar embryonic initial cells form, divide, and expand. Once the zygotic embryo becomes dominant, the initial cells stop dividing and expanding. Following this stage, the zygotic embryo continues to develop and the initial cells continue to develop as well, forming nucellar embryos. The nucellar embryos generally end up outcompeting the zygotic embryo, rending the zygotic embryo dormant. The polyembryonic seed is then formed by the many adventitious embryos within the ovule [3] (to picture this process, refer to Figure 1). The nucellar embryos produced via apomixis inherit its mother's genetics, making them desirable for citrus propagation, research, and breeding. [4]

Contents

Nucellar embryony outside of citrus varieties

Nucellar embryos have also been found in polyembryonic Mango varieties, where generally one of the embryos is zygotic and the rest are nucellar. [5] However, there is little research on Mangos undergoing nucellar embryo development as there has on varieties of citrus.

Conditions

Nucellar embryony is able to occur within both fertilized and unfertilized ovules. Furthermore, instead of using the endosperm as nutritive tissue, it will utilize the surrounding nucellus tissue for nutrition. [3] For example, the ‘Valencia’ orange undergoes nucellar embryony in both fertilized and unfertilized conditions. [3] But, it has been found that nucellar embryo development, under fertilized or unfertilized conditions, can take place in different positions. [6]

Features

An important component of nucellar embryo development is its changing cell wall thickness. Between nucellar embryo's initial cell stage and its dividing and expanding stage, the cells' wall thickens. [7] This most likely occurs due to callose deposition; callose deposition reduces the permeability of a cell and is usually found in the initial cells about to undergo embryogenesis. [8] The initial cells become enlarged, rounded, and divided. During this stage, the initial cell's cell walls thin out, leaving room for the nucleus to become distinguished.

Seedless fruits and influence by the citrus industry

Many seed plants, including citrus fruits, are self-compatible, meaning that they are able to fertilize themselves. Self-compatibility produces a seedy fruit which may be deemed as undesirable to the citrus industry.

Seedless fruits have been made popular as they are sought-after in the citrus industry. To be seedless, a citrus must exhibit self-incompatibility, another reproductive trait within citrus fruits and many seed plants. Self incompatibility is the phenomena where hermaphroditic plants are not able to produce fertile embryos after self-pollination. [9] Self-incompatibility is regulated by the S-loci; if pollen is rendered incompatible, it is determined by its haploid S genotype, or if its sporophyte is rendered incompatible, it would be determined by its diploid S genotype. This is also termed and associated with parthenocarpy, the production of fruit without fertilization. Self-incompatible fruits are able to undergo parthenocarpy to yield seedless fruits. In citrus specifically, there have been other modes developed to reduce seeding as well: gibberellic acid enhances ovule abortion [10] and copper sulfate has been shown to reduce seed number in fruit. [11] An example is the ‘Afourer’ mandarin that contains a haploid self-incompatibility system and parthenocarpy. Under conditions where cross-pollination is not present, the ‘Afourer’ mandarin produces a seedless fruit by undergoing parthenocarpy. Where cross-pollination is present, gibberellic acid is applied and produces a decreased seeding fruit. [11]

Nucellar embryony is important to the citrus industry, as it allows for the production of uniform rootstock which yields consistent results in fruit production. However, this trait can interfere with progress in cross-breeding; most commercial scion varieties produce mainly nucellar seedlings which do not inherit any of the traits of the "father" plant.

See also

Related Research Articles

<span class="mw-page-title-main">Asexual reproduction</span> Reproduction without a sexual process

Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent and thus the newly created individual is genetically and physically similar to the parent or an exact clone of the parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many eukaryotic organisms including plants, animals, and fungi can also reproduce asexually. In vertebrates, the most common form of asexual reproduction is parthenogenesis, which is typically used as an alternative to sexual reproduction in times when reproductive opportunities are limited. Komodo dragons and some monitor lizards can reproduce asexually.

<span class="mw-page-title-main">Fruit</span> Seed-bearing part of a flowering plant

In botany, a fruit is the seed-bearing structure in flowering plants that is formed from the ovary after flowering.

<span class="mw-page-title-main">Flowering plant</span> Clade of seed plants that produce flowers

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae, commonly called angiosperms. They include all forbs, grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. The term "angiosperm" is derived from the Greek words ἀγγεῖον / angeion and σπέρμα / sperma ('seed'), meaning that the seeds are enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. Angiosperms were formerly called Magnoliophyta.

<span class="mw-page-title-main">Seed</span> Embryonic plant enclosed in a protective outer covering

In botany, a seed is a plant embryo and food reserve enclosed in a protective outer covering called a seed coat (testa). More generally, the term "seed" means anything that can be sown, which may include seed and husk or tuber. Seeds are the product of the ripened ovule, after the embryo sac is fertilized by sperm from pollen, forming a zygote. The embryo within a seed develops from the zygote and grows within the mother plant to a certain size before growth is halted.

<span class="mw-page-title-main">Apomixis</span> Replacement of the normal sexual reproduction by asexual reproduction, without fertilization

In botany, apomixis is asexual development of seed or embryo without fertilization. However, other definitions include replacement of the seed by a plantlet or replacement of the flower by bulbils.

<span class="mw-page-title-main">Fruit tree pollination</span>

Pollination of fruit trees is required to produce seeds with surrounding fruit. It is the process of moving pollen from the anther to the stigma, either in the same flower or in another flower. Some tree species, including many fruit trees, do not produce fruit from self-pollination, so pollinizer trees are planted in orchards.

<span class="mw-page-title-main">Parthenocarpy</span> Production of seedless fruit without fertilisation

In botany and horticulture, parthenocarpy is the natural or artificially induced production of fruit without fertilisation of ovules, which makes the fruit seedless. The phenomenon has been observed since ancient times but was first scientifically described by German botanist Fritz Noll in 1902.

<span class="mw-page-title-main">Ovule</span> Female plant reproductive structure

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus, and the female gametophyte in its center. The female gametophyte — specifically termed a megagametophyte— is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule.

<span class="mw-page-title-main">Endosperm</span> Starchy tissue inside cereals and alike

The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid in most species, which may be auxin-driven. It surrounds the embryo and provides nutrition in the form of starch, though it can also contain oils and protein. This can make endosperm a source of nutrition in animal diet. For example, wheat endosperm is ground into flour for bread, while barley endosperm is the main source of sugars for beer production. Other examples of endosperm that forms the bulk of the edible portion are coconut "meat" and coconut "water", and corn. Some plants, such as orchids, lack endosperm in their seeds.

<span class="mw-page-title-main">Plant reproductive morphology</span> Parts of plant enabling sexual reproduction

Plant reproductive morphology is the study of the physical form and structure of those parts of plants directly or indirectly concerned with sexual reproduction.

Self-incompatibility (SI) is a general name for several genetic mechanisms that prevent self-fertilization in sexually reproducing organisms, and thus encourage outcrossing and allogamy. It is contrasted with separation of sexes among individuals (dioecy), and their various modes of spatial (herkogamy) and temporal (dichogamy) separation.

Plant embryonic development, also plant embryogenesis is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. The zygote produced after fertilization must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike the embryonic development in animals, and specifically in humans, plant embryonic development results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. However, both plants and animals including humans, pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

<span class="mw-page-title-main">Gynoecium</span> Female organs of a flower

Gynoecium is most commonly used as a collective term for the parts of a flower that produce ovules and ultimately develop into the fruit and seeds. The gynoecium is the innermost whorl of a flower; it consists of pistils and is typically surrounded by the pollen-producing reproductive organs, the stamens, collectively called the androecium. The gynoecium is often referred to as the "female" portion of the flower, although rather than directly producing female gametes, the gynoecium produces megaspores, each of which develops into a female gametophyte which then produces egg cells.

<span class="mw-page-title-main">Stenospermocarpy</span> Biological mechanism

Stenospermocarpy is the biological mechanism that produces parthenocarpy (seedlessness) in some fruits, notably many table grapes.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization is a complex fertilization mechanism of flowering plants (angiosperms). This process involves the joining of a female gametophyte with two male gametes (sperm). It begins when a pollen grain adheres to the stigma of the carpel, the female reproductive structure of a flower. The pollen grain then takes in moisture and begins to germinate, forming a pollen tube that extends down toward the ovary through the style. The tip of the pollen tube then enters the ovary and penetrates through the micropyle opening in the ovule. The pollen tube proceeds to release the two sperm in the embryo sac.

A seedless fruit is a fruit developed to possess no mature seeds. Since eating seedless fruits is generally easier and more convenient, they are considered commercially valuable.

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

<span class="mw-page-title-main">Callose</span> Plant cell wall polysaccharide

Callose is a plant polysaccharide. Its production is due to the glucan synthase-like gene (GLS) in various places within a plant. It is produced to act as a temporary cell wall in response to stimuli such as stress or damage. Callose is composed of glucose residues linked together through β-1,3-linkages, and is termed a β-glucan. It is thought to be manufactured at the cell wall by callose synthases and is degraded by β-1,3-glucanases. Callose is very important for the permeability of plasmodesmata (Pd) in plants; the plant's permeability is regulated by plasmodesmata callose (PDC). PDC is made by callose synthases and broken down by β-1,3-glucanases (BGs). The amount of callose that is built up at the plasmodesmatal neck, which is brought about by the interference of callose synthases (CalSs) and β-1,3-glucanases, determines the conductivity of the plasmodesmata.

Polyembryony is the phenomenon of two or more embryos developing from a single fertilized egg. Due to the embryos resulting from the same egg, the embryos are identical to one another, but are genetically diverse from the parents. The genetic difference between the offspring and the parents, but the similarity among siblings, are significant distinctions between polyembryony and the process of budding and typical sexual reproduction. Polyembryony can occur in humans, resulting in identical twins, though the process is random and at a low frequency. Polyembryony occurs regularly in many species of vertebrates, invertebrates, and plants.

Gametogamy is sexual fusion – copulation or fertlization – of two single-celled gametes of different sex and the union of their gamete nuclei giving the zygote nucleus, as well as whole zygotic content.

References

  1. 1 2 Zhang, Siqi; Liang, Mei; Wang, Nan; Xu, Qiang; Deng, Xiuxin; Chai, Lijun (March 2018). "Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility". Plant Reproduction. 31 (1): 43–57. doi:10.1007/s00497-018-0327-4. ISSN   2194-7953. PMID   29457194. S2CID   254022638.
  2. Aleza, P.; Juárez, J.; Ollitrault, P.; Navarro, L. (2010). "Polyembryony in non-apomictic citrus genotypes". Annals of Botany. 106 (4): 533–545. doi:10.1093/aob/mcq148. PMC   2944972 . PMID   20675656.
  3. 1 2 3 Koltunow, A. M. (1993-10-01). "Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules". The Plant Cell. 5 (10): 1425–1437. doi:10.1105/tpc.5.10.1425. ISSN   1040-4651. PMC   160373 . PMID   12271038.
  4. Spillane, C.; Steimer, A.; Grossniklaus, U. (2001-12-01). "Apomixis in agriculture: the quest for clonal seeds". Sexual Plant Reproduction. 14 (4): 179–187. doi:10.1007/s00497-001-0117-1. ISSN   1432-2145. PMID   24573424. S2CID   23996256.
  5. Aron, Y.; Gazit, S.; Czosnek, H.; Degani, C. (1998-12-01). "Polyembryony in Mango (Mangifera indica L.) Is Controlled by a Single Dominant Gene". HortScience. 33 (7): 1241–1242. doi: 10.21273/HORTSCI.33.7.1241 . ISSN   0018-5345.
  6. Wakana, Akira; Uemoto, Shunpei (April 1987). "Adventive Embryogenesis in Citrus I. The Occurrence of Adventive Embryos Without Pollination or Fertilization". American Journal of Botany. 74 (4): 517–530. doi:10.1002/j.1537-2197.1987.tb08672.x.
  7. Wilms, H. J.; Went, J. L. van; Cresti, M.; Ciampolini, F. (1983-01-01). "Adventive Embryogenesis in Citrus". Caryologia. 36 (1): 65–78. doi:10.1080/00087114.1983.10797645. ISSN   0008-7114.
  8. Wakana, Akira; Uemoto, Shunpei (1988). "Adventive Embryogenesis in Citrus (Rutaceae). II. Postfertilization Development". American Journal of Botany. 75 (7): 1033–1047. doi:10.2307/2443771. ISSN   0002-9122. JSTOR   2443771.
  9. Končalová, Marie Naděžda (1978-12-01). "D. de Nettancourt Incompatibility in angiosperms". Folia Geobotanica et Phytotaxonomica (in German). 13 (4): 370. doi:10.1007/BF02851938. ISSN   1874-9348. S2CID   5868472.
  10. Newbigin, E.; Anderson, M. A.; Clarke, A. E. (1993-10-01). "Gametophytic Self-Incompatibility Systems". The Plant Cell. 5 (10): 1315–1324. doi:10.1105/tpc.5.10.1315. ISSN   1040-4651. PMC   160364 . PMID   12271031.
  11. 1 2 Gambetta, Giuliana; Gravina, Alfredo; Fasiolo, Carolina; Fornero, Cecilia; Galiger, Sebastián; Inzaurralde, Cristian; Rey, Florencia (2013-12-17). "Self-incompatibility, parthenocarpy and reduction of seed presence in 'Afourer' mandarin". Scientia Horticulturae. 164: 183–188. doi:10.1016/j.scienta.2013.09.002. ISSN   0304-4238.