Pseudogamy

Last updated

Pseudogamy refers to aspects of reproduction. It has different (but related) meanings in zoology and in botany.

Contents

In zoology

In zoology, it means a type of parthenogenesis in which the sperm stimulates the egg cell to develop into an embryo, but no genes from the male are inherited. Gynogenesis is a synonym. [1] [2]

In botany

In botany, "pseudogamy" is also related to asexual reproduction. Wilhelm Olbers Focke [3] (1881) is usually cited for the definition of the term. [4] [5] What he actually said was (page 525, translated)

"III PSEUDOGAMY.
In experiments to raise hybrids, you sometimes get plants that resemble the mother plant, but partly in their sexual potency appear noticeably weakened. They have for this reason often been taken for hybrids. I suspect that in such cases the foreign pollen no real fertilization completed, but only gave the stimulus to produce the outer parts of fruit. The seeds, which are found in the fruit, are, in my opinion, not spawned by hybridization and generally not through sexual procreation, rather they are incurred parthenogenetically."

Thus in botany, pseudogamy means any reproductive process that requires pollination but does not involve male inheritance. It is sometimes used in a restrictive sense [6] [7] to refer to types of agamospermy in which the endosperm is fertilized but the embryo is not (see Pseudogamous apomixis, below). A better term for the restrictive sense is centrogamy. [8]

Pseudogamous apomixis

Apomixis in flowering plants (angiosperms) includes some types of vegetative reproduction and also agamospermy, which is asexual reproduction through seeds [9] (see apomixis for more information). Agamospermy can occur through many different mechanisms, [6] [7] some of which require pollination (pseudogamy), and some of which do not (autonomous apomixis). Many flowering plants with pseudogamous apomixis require fertilization to produce the endosperm of the seed. [6] [7] However, it has been shown [10] that pollination with compatible pollen can be required even in some species where endosperm development is autonomous.

Pseudogamous apomixis occurs in many families. [6] [7] It is particularly common in Rosaceae and Poaceae, where it occurs in many different genera and species. Examples of species with pseudogamous apomixis include the Himalayan blackberry Rubus armeniacus and gamagrass Tripsacum dactyloides . By contrast, autonomous apomixis is the rule among the many apomictic species of Asteraceae including the common dandelion Taraxacum officinale , and also occurs in several genera of Poaceae.

Related Research Articles

<span class="mw-page-title-main">Asexual reproduction</span> Reproduction without a sexual process

Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent and thus the newly created individual is genetically and physically similar to the parent or an exact clone of the parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many eukaryotic organisms including plants, animals, and fungi can also reproduce asexually. In vertebrates, the most common form of asexual reproduction is parthenogenesis, which is typically used as an alternative to sexual reproduction in times when reproductive opportunities are limited. Komodo dragons and some monitor lizards can reproduce asexually.

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Flowering plant</span> Clade of seed plants that produce flowers

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae, commonly called angiosperms. They include all forbs, grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. The term "angiosperm" is derived from the Greek words ἀγγεῖον / angeion and σπέρμα / sperma ('seed'), meaning that the seeds are enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. Angiosperms were formerly called Magnoliophyta.

<span class="mw-page-title-main">Reproduction</span> Biological process by which new organisms are generated from one or more parent organisms

Reproduction is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. Reproduction is a fundamental feature of all known life; each individual organism exists as the result of reproduction. There are two forms of reproduction: asexual and sexual.

<span class="mw-page-title-main">Fertilisation</span> Union of gametes of opposite sexes during the process of sexual reproduction to form a zygote

Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. While processes such as insemination or pollination which happen before the fusion of gametes are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

<span class="mw-page-title-main">Apomixis</span> Replacement of the normal sexual reproduction by asexual reproduction, without fertilization

In botany, apomixis is asexual development of seed or embryo without fertilization. However, other definitions include replacement of the seed by a plantlet or replacement of the flower by bulbils.

<span class="mw-page-title-main">Parthenocarpy</span> Production of seedless fruit without fertilisation

In botany and horticulture, parthenocarpy is the natural or artificially induced production of fruit without fertilisation of ovules, which makes the fruit seedless. The phenomenon has been observed since ancient times but was first scientifically described by German botanist Fritz Noll in 1902.

<span class="mw-page-title-main">Ovule</span> Female plant reproductive structure

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus, and the female gametophyte in its center. The female gametophyte — specifically termed a megagametophyte— is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule.

<span class="mw-page-title-main">Endosperm</span> Starchy tissue inside cereals and alike

The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid in most species, which may be auxin-driven. It surrounds the embryo and provides nutrition in the form of starch, though it can also contain oils and protein. This can make endosperm a source of nutrition in animal diet. For example, wheat endosperm is ground into flour for bread, while barley endosperm is the main source of sugars for beer production. Other examples of endosperm that forms the bulk of the edible portion are coconut "meat" and coconut "water", and corn. Some plants, such as orchids, lack endosperm in their seeds.

<span class="mw-page-title-main">Plant reproductive morphology</span> Parts of plant enabling sexual reproduction

Plant reproductive morphology is the study of the physical form and structure of those parts of plants directly or indirectly concerned with sexual reproduction.

<i>Crepis</i> Genus of flowering plants in the family Asteraceae

Crepis, commonly known in some parts of the world as hawksbeard or hawk's-beard, is a genus of annual and perennial flowering plants of the family Asteraceae superficially resembling the dandelion, the most conspicuous difference being that Crepis usually has branching scapes with multiple heads. The genus name Crepis derives from the Greek krepis, meaning "slipper" or "sandal", possibly in reference to the shape of the fruit.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization is a complex fertilization mechanism of flowering plants (angiosperms). This process involves the joining of a female gametophyte with two male gametes (sperm). It begins when a pollen grain adheres to the stigma of the carpel, the female reproductive structure of a flower. The pollen grain then takes in moisture and begins to germinate, forming a pollen tube that extends down toward the ovary through the style. The tip of the pollen tube then enters the ovary and penetrates through the micropyle opening in the ovule. The pollen tube proceeds to release the two sperm in the embryo sac.

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

Megagametogenesis is the process of maturation of the female gametophyte, or megagametophyte, in plants During the process of megagametogenesis, the megaspore, which arises from megasporogenesis, develops into the embryo sac, which is where the female gamete is housed. These megaspores then develop into the haploid female gametophytes. This occurs within the ovule, which is housed inside the ovary.

<span class="mw-page-title-main">Nucellar embryony</span>

Nucellar embryony is a form of seed reproduction that occurs in certain plant species, including many citrus varieties. Nucellar embryony is a type of apomixis, where eventually nucellar embryos from the nucellus tissue of the ovule are formed, independent of meiosis and sexual reproduction. During the development of seeds in plants that possess this genetic trait, the nucellus tissue which surrounds the megagametophyte can produce nucellar cells, also termed initial cells. These additional embryos (polyembryony) are genetically identical to the parent plant, rendering them as clones. By contrast, zygotic seedlings are sexually produced and inherit genetic material from both parents. Most angiosperms reproduce sexually through double fertilization. Different from nucellar embryony, double fertilization occurs via the syngamy of sperm and egg cells, producing a triploid endosperm and a diploid zygotic embryo. In nucellar embryony, embryos are formed asexually from the nucellus tissue. Zygotic and nucellar embryos can occur in the same seed (monoembryony), and a zygotic embryo can divide to produce multiple embryos. The nucellar embryonic initial cells form, divide, and expand. Once the zygotic embryo becomes dominant, the initial cells stop dividing and expanding. Following this stage, the zygotic embryo continues to develop and the initial cells continue to develop as well, forming nucellar embryos. The nucellar embryos generally end up outcompeting the zygotic embryo, rending the zygotic embryo dormant. The polyembryonic seed is then formed by the many adventitious embryos within the ovule. The nucellar embryos produced via apomixis inherit its mother's genetics, making them desirable for citrus propagation, research, and breeding.

<span class="mw-page-title-main">Parthenogenesis</span> Asexual reproduction without fertilization

Parthenogenesis is a natural form of asexual reproduction in which growth and development of embryos occur in a gamete without combining with another gamete. In animals, parthenogenesis means development of an embryo from an unfertilized egg cell. In plants, parthenogenesis is a component process of apomixis. In algae, parthenogenesis can mean the development of an embryo from either an individual sperm or an individual egg.

<span class="mw-page-title-main">Sexual reproduction</span> Reproduction process that creates a new organism by combining the genetic material of two organisms

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

Gametogamy is sexual fusion – copulation or fertlization – of two single-celled gametes of different sex and the union of their gamete nuclei giving the zygote nucleus, as well as whole zygotic content.

<span class="mw-page-title-main">Monocotyledon reproduction</span> Flowering plant reproduction system

The monocots are one of the two major groups of flowering plants, the other being the dicots. In order to reproduce they utilize various strategies such as employing forms of asexual reproduction, restricting which individuals they are sexually compatible with, or influencing how they are pollinated. Nearly all reproductive strategies that evolved in the dicots have independently evolved in monocots as well. Despite these similarities and their close relatedness, monocots and dicots have distinct traits in their reproductive biologies.

Androgenesis occurs when a zygote is produced with only paternal nuclear genes. During standard sexual reproduction, one female and one male parent each produce haploid gametes, which recombine to create offspring with genetic material from both parents. However, in androgenesis, there is no recombination of maternal and paternal chromosomes, and only the paternal chromosomes are passed down to the offspring. The offspring produced in androgenesis will still have maternally inherited mitochondria, as is the case with most sexually reproducing species.

References

  1. Engelstädter, J. (2008). Constraints on the evolution of asexual reproduction. BioEssays. Review Article. 30(11–12): 1138–1150.
  2. Schlupp, I. (2005). The evolutionary ecology of gynogenesis. Annual Review of Ecology, Evolution, and Systematics. 36: 399–417.
  3. Focke, W.O. 1881. Die Pflanzen-mischlinge, ein Beitrag zur Biologie der Gewächse. Borntraeger, Berlin. Google books
  4. Hermsen, J.G.T. (1980). Breeding for apomixis in potato: Pursuing a utopian scheme. Euphytica. 29(3): 595-607
  5. Haskell, G. (1960). Role of the male parent in crosses involving apomictic Rubus species. Heredity. 14(1): 101–113.
  6. 1 2 3 4 Nygren, A. 1967. Apomixis in the angiosperms. In Handbuch der Pflanzenphysiologie. Edited by W. Ruhland. Springer-Verlag, Berlin. pp. 551–596.
  7. 1 2 3 4 Nogler, G.A. 1984. Gametophytic apomixis. In Embryology of angiosperms. Edited by B.M. Johri. Springer, Berlin, Germany. pp. 475–518.
  8. Solntzeva, M.P. (2003). About some terms of apomixis: pseudogamy and androgenesis. Biologia. 58(1): 1–7.
  9. Winkler, H. (1908). Über Parthenogenesis und Apogamie im Pflanzenreich. Progressus Rei Botanicae. 2(3): 293–454.
  10. Bicknell, R.A., et al. (2003). Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas. 138(1): 11–20.