In evolutionary biology, mimicry in vertebrates is mimicry by a vertebrate of some model (an animal, not necessarily a vertebrate), deceiving some other animal, the dupe. [1] Mimicry differs from camouflage as it is meant to be seen, while animals use camouflage to remain hidden. Visual, olfactory, auditory, biochemical, and behavioral modalities of mimicry have been documented in vertebrates. [1] [2]
There are few well-studied examples of mimicry in vertebrates. [1] Still, many of the basic types of mimicry apply to vertebrates, especially among snakes. Batesian mimicry is rare among vertebrates but found in some reptiles (particularly snakes) and amphibians. [2] [3] Müllerian mimicry is found in some snakes, birds, amphibians, and fish. [2] [4] [5] [6] Aggressive mimicry is known in some vertebrate predators and parasites, while certain forms of sexual mimicry are distinctly more complex than in invertebrates. [7] [8] [9]
Batesian mimicry is a form of defense that allows a harmless species to mimic the appearance of a toxic, noxious, or harmful species to protect itself from predators. By mimicking the appearance of a harmful species, a predator is less likely to attack the species due to its awareness of the signal of warning color patterns. Batesian mimicry occurs in multiple vertebrates, but is less prevalent in mammals due to a relative rarity of well-marked harmful models. However, this form of mimicry is prevalent in snakes and frogs, where chemical defense has coevolved with distinct coloration. Still, mammals have evolved Batesian mimicry systems where particularly powerful or harmful models exist.
For example, Batesian mimicry may occur in cheetah cubs. They replicate the appearance of a sympatric species, the honey badger (Mellivora capensis). The honey badger has a white or silvery back with a black or brownish underbelly and grows to a body length of about three feet long and ten inches high. As cubs, cheetahs have the same reverse-countershading color pattern and are roughly the same size. Due to this conspicuous coloration, potential predators like lions and birds of prey are less likely to hunt cheetah cubs, as from a distance they appear to be honey badgers. Honey badgers make an effective model because their aggressive nature and glands on their tails that produce a noxious fluid enable them to deter predators up to 10x their size. [10]
Batesian mimicry also occurs in the scarlet kingsnake. This species resembles the venomous coral snake, sharing a pattern of red, black, and yellow bands. Although the order of the color rings differ between the two snakes, from a distance a predator can easily mistake the scarlet kingsnake for its venomous model. [3]
Müllerian mimicry is another form of defensive mimicry, except the system involves two or more species that are all toxic, noxious, or harmful. These species develop similar appearances to collectively protect against predators. This adaptation is said to have evolved due to the additive protection of many species that look the same and reliably have harmful defenses. That is to say, this mimicry system evolves convergently. If a predator is aware of the potential threat of one species, the predator will also avoid any species with a similar appearance, creating the Müllerian mimicry affect. Again, the relative lack of noxious models limits most examples to systems that involve reptiles or amphibians.
Müllerian mimicry is found in many pitvipers. All pit vipers are capable of delivering a life-threateningly venomous bite. In Asia, different species found throughout Asia have evolved separately to have a very similar appearance. Each species is found in different places in Asia, but have the same green coloration with reddish tail tip. These shared colorations are warnings signals for predators. Because a predator is aware of these warning signals, it will avoid all species with this color pattern. Species that benefit from this system include Trimeresurus macrops , T. purpureomaculatus , Trimeresurus septentrionalis , T. flavomaculatus and T. hageni . [4]
Müllerian mimicry is also found in a ring of poisonous frog species in Peru. The mimic poison frog (Dendrobates imitator) mimics 3 similarly poisonous frogs of the same genus that live in different areas. These are D. variabilis , D. fantasticus, and D. ventrimaculatus . [5] D. imitator can replicate the different appearances of all 3 species with color patterns ranging from black spots with yellow back and bluish green limbs, larger black spots with yellow outline, and black linear spots with yellow and bluish green outline.
The slow loris is one of the few known venomous mammals, and appears to use Müllerian mimicry for protection. It is hypothesized that this venom may have allowed it to develop a system of Müllerian mimicry with the Indian cobra. Slow lorises appear to look similar to the cobras with "facial markings undeniably akin to the eyespots and accompanying stripes of the spectacled cobra". Dark contrasting dorsal stripes are also apparent in both species,, helping to confuse predators from above. When in aggressive encounters, slow lorises will make a grunting noise that mimics the hiss of a cobra. This example of Müllerian mimicry is likely unique to vertebrates due to its multiple modalities: biochemical, behavioral, visual, and auditory. Since the cobra is undoubtedly more dangerous to predators (and prey, as the loris eats predominantly fruits, gums, and insects), it is unclear if the benefit from this system is mutual; Still, both species are dangerous in their own right, and can therefore most accurately be classified as Müllerian. [11]
Aggressive mimicry is a form of mimicry, opposite in principle to defensive mimicry, that occurs in certain predators, parasites or parasitoids. These organisms benefit by sharing some of the characteristics of a harmless species in order to deceive their prey or host. Most examples of aggressive mimicry involve the predator employing a signal to lure its prey towards it under the promise of food, sex, or other rewards—much like the idiom of a wolf in sheep's clothing.
Some predators pretend to be prey or a third-party organism that the prey beneficially interacts with. In either situation, the mimicry increases the predator's chances of catching its prey. [12]
One form of predatory mimicry, lingual luring, involves wriggling the tongue to attract prey, duping them into believing the tongue is a small worm, an unusual case of a vertebrate mimicking an invertebrate. In the puff adder Bitis arietans , lingual luring only occurs in the act of attracting amphibian prey, suggesting that puff adders distinguished between prey types when selecting how to perform a display of aggressive mimicry. [12]
Another form of aggressive mimicry is caudal luring, in which the tail is waved to mimic prey. By mimicking invertebrate larva, the predator attracts prey of small vertebrates such as frogs, lizards, and birds. Male puff adders have longer, more obvious-looking tails. Sidewinder rattlesnakes, puff adders, lanceheads, and multiple other ambush-predatory snakes use caudal luring to attract prey. [13] [12] [14] [15] [16] [17]
Complicated forms of aggressive mimicry have also been observed in fish, creating a system that resembles Batesian mimicry. The false cleanerfish, Aspidontus taeniatus, is a fin-eating blenny that has evolved to resemble a local species of cleaner wrasse, Labroides dimidiatus , which engages in mutualistic cleaning with larger fish. By closely mimicking the coloration and the cleaner fish's distinctive dancing display, false cleanerfish are able to remain in close quarters with large predatory reef fish, and gain access to victims during foraging. [18]
Some aggressive mimics switch rapidly between aggressive mimicry and defensive behavior depending on whether they are in the presence of a prey or a potential predator. For example, the sidewinder rattlesnake ceases aggressive behavior upon the arrival of a predatory toad and begins species-typical defensive displays. [13]
Host-parasite mimicry is a form of aggressive mimicry in which a parasite mimics its own host. Brood parasitism is a common form of parasitic aggressive mimicry that occurs in vertebrates, with cuckoos being a notable example. Brood parasite mothers will surrender their offspring to be raised by another organism, of either the same or a different species, unbeknownst to the other organism. This allows the progeny to be nurtured without energy expenditure or parental care by the true parent.
Cuckoos are brood parasites that lay their eggs to match the color and pattern of their host's own eggs. Different species of cuckoo hatchlings have been known to mimic the acoustic sound, such as during begging, and appearance of the host offspring. [19] [20] [21] [22] Unlike most vertebrates that perform aggressive mimicry, certain brood parasitic birds display signals of two distinct modalities at the same time. For example, Horsfield's bronze cuckoo nestlings have been found to employ both acoustic and visual sensory modalities at the same time to increase efficiency and success of their mimicry. [21] [22]
However, host-parasite systems are not always as precise. Great spotted cuckoos are brood parasites that lay eggs that can successfully dupe other birds such as the magpie, pied starling, and black crow, despite having different egg color, egg size, and offspring features. It is hypothesized that these differences in characteristic have evolved after the mimicry system due to genetic isolation, as the appearance of eggs laid by European an African great spotted cuckoos are different. [7]
Evidence also exists for other forms of parasitic mimicry in vertebrates. One such form is interspecific social dominance mimicry, a type of social parasitism where a subordinate species (usually determined by size) evolves over time to mimic its dominant ecological competitor, thereby competing with its previously socially dominant opponent. [23] One such example is found in the tyrant flycatcher family, in which different birds of similar appearance exist from six different genera. Smaller-bodied species from four genera have been found to mimic the appearance of the larger species of the other two genera, suggesting that an avian mimicry complex has contributed to convergent evolution, providing a competitive advantage in the same ecological niche. [23]
Automimicry is a type of mimicry that occurs within a single species, in which an individual mimics either a different member of its own species or a different part of its own body. In some cases, it is considered a form of Batesian mimicry, and is exhibited by a wide variety of vertebrates. Many of the basic strategies automimics use in invertebrates is repeated in vertebrates, such as eyespots.
In sexual mimicry, an organism mimics the behaviors or physical traits of the opposite sex within its species. Spotted hyenas are one of the few vertebrate examples. In spotted hyenas, females have a pseudo-penis, which is highly erectile clitoral tissue, as well as a false scrotum. Females have evolved to mimic or exceed the testosterone levels of males [8] This is advantageous because it lends females heightened aggression and dominance over the males in a highly competitive environment. Alternatively, it may have evolved for the advantage it bestows upon sexually indistinguishable cubs, which experience a high level of female-targeted infanticide. [8]
Another example is in flat lizards, where some males imitate female coloring to sneak around more dominant males and achieve copulation with females. [9]
Some vertebrates species self-mimic their own body parts, through the use of patterns or actual anatomy. Two widespread examples of this are eyespots and false heads, both of which can misdirect, confuse, or intimidate potential predators.
Eyespots are a form of automimicry in which an organism displays false eyes on a different part of its body, considered to be an aversion to predators who believe the prey animal has spotted them or is behaving aggressively, even when they are actually facing the other direction and unaware. In the case of attack, eyespots may also redirect damage away from the true head. [24] Eyespots can be seen across the vertebrate taxa, from the four-eyed butterfly fish to pygmy owls. [25]
False-head mimicry occurs when an organism displays a different body part that has evolved to look like a head, achieving the same scare tactic as eyespots, and also protecting the vulnerable and important real head. For example, the rubber boa coil up and hide their heads, instead displaying their tails, which look morphologically like their heads, in a defensive behavior. [26]
Mimicry, in vertebrates or otherwise, is widely hypothesized to follow patterns of directional selection. However, it is argued that, while positive evolution might stabilize mimic forms, other evolutionary factors like random mutation create mimetic forms simply by coincidence. [27] Vertebrate evolution systems often operate under unique selective pressures, resulting in the different quantitative and qualitative characteristics we observe between mimicry in vertebrates and other animals. [1]
The primary difference between mimicry in vertebrates and in insects is a decreased diversity and frequency. The 50,000 extant vertebrates are dwarfed by the over 1 million known invertebrates. Vertebrates seem to have multiple barriers to precise mimicry that invertebrates do not. Due to the drastic difference in average body size between the two phyla, vertebrates tend to mimic other living things, while invertebrates are much better able to mimic inanimate objects. [1] [10] [28] Large size makes any imprecision much more noticeable to the naked eye, slowing or preventing the evolution of mimicry. However, when a potential prey is highly noxious, as in snakes, predators that avoid even poor mimics gain a strong selective advantage; whereas insects, rarely able to deliver enough toxin to threaten vertebrate predators, would need precise mimicry to avoid detection. [1] [2] [3] [29]
The assumption of scarcity in vertebrate mimetic resemblances is largely limited due to human perception. Humans are hyper-perceptive to visual mimicry systems, and find these the most abundant. However, olfactory, biochemical, and even electroreceptive forms of mimicry are likely to be much more common than currently accounted for. [1] [30] [31]
In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. In the simplest case, as in Batesian mimicry, a mimic resembles a model, so as to deceive a dupe, all three being of different species. A Batesian mimic, such as a hoverfly, is harmless, while its model, such as a wasp, is harmful, and is avoided by the dupe, such as an insect-eating bird. Birds hunt by sight, so the mimicry in that case is visual, but in other cases mimicry may make use of any of the senses. Most types of mimicry, including Batesian, are deceptive, as the mimics are not harmful, but Müllerian mimicry, where different harmful species resemble each other, is honest, as when species of wasps and of bees all have genuinely aposematic warning coloration. More complex types may be bipolar, involving only two species, such as when the model and the dupe are the same; this occurs for example in aggressive mimicry, where a predator in wolf-in-sheep's-clothing style resembles its prey, allowing it to hunt undetected. Mimicry is not limited to animals; in Pouyannian mimicry, an orchid flower is the mimic, resembling a female bee, its model; the dupe is the male bee of the same species, which tries to copulate with the flower, enabling it to transfer pollen, so the mimicry is again bipolar. In automimicry, another bipolar system, model and mimic are the same, as when blue lycaenid butterflies have 'tails' or eyespots on their wings that mimic their own heads, misdirecting predator dupes to strike harmlessly. Many other types of mimicry exist.
Brood parasitism is a subclass of parasitism and phenomenon and behavioural pattern of animals that rely on others to raise their young. The strategy appears among birds, insects and fish. The brood parasite manipulates a host, either of the same or of another species, to raise its young as if it were its own, usually using egg mimicry, with eggs that resemble the host's. The strategy involves a form of aggressive mimicry called Kirbyan mimicry.
Batesian mimicry is a form of mimicry where a harmless species has evolved to imitate the warning signals of a harmful species directed at a predator of them both. It is named after the English naturalist Henry Walter Bates, who worked on butterflies in the rainforests of Brazil.
Anti-predator adaptations are mechanisms developed through evolution that assist prey organisms in their constant struggle against predators. Throughout the animal kingdom, adaptations have evolved for every stage of this struggle, namely by avoiding detection, warding off attack, fighting back, or escaping when caught.
The viceroy is a North American butterfly. It was long thought to be a Batesian mimic of the monarch butterfly, but since the viceroy is also distasteful to predators, it is now considered a Müllerian mimic instead.
Müllerian mimicry is a natural phenomenon in which two or more well-defended species, often foul-tasting and sharing common predators, have come to mimic each other's honest warning signals, to their mutual benefit. The benefit to Müllerian mimics is that predators only need one unpleasant encounter with one member of a set of Müllerian mimics, and thereafter avoid all similar coloration, whether or not it belongs to the same species as the initial encounter. It is named after the German naturalist Fritz Müller, who first proposed the concept in 1878, supporting his theory with the first mathematical model of frequency-dependent selection, one of the first such models anywhere in biology.
Aposematism is the advertising by an animal, whether terrestrial or marine, to potential predators that it is not worth attacking or eating. This unprofitability may consist of any defenses which make the prey difficult to kill and eat, such as toxicity, venom, foul taste or smell, sharp spines, or aggressive nature. These advertising signals may take the form of conspicuous coloration, sounds, odours, or other perceivable characteristics. Aposematic signals are beneficial for both predator and prey, since both avoid potential harm.
Ant mimicry or myrmecomorphy is mimicry of ants by other organisms; it has evolved over 70 times. Ants are abundant all over the world, and potential predators that rely on vision to identify their prey, such as birds and wasps, normally avoid them, because they are either unpalatable or aggressive. Some arthropods mimic ants to escape predation, while some predators of ants, especially spiders, mimic them anatomically and behaviourally in aggressive mimicry. Ant mimicry has existed almost as long as ants themselves; the earliest ant mimics in the fossil record appear in the mid-Cretaceous alongside the earliest ants.
In zoology, automimicry, Browerian mimicry, or intraspecific mimicry, is a form of mimicry in which the same species of animal is imitated. There are two different forms.
An eyespot is an eye-like marking. They are found in butterflies, reptiles, cats, birds and fish.
Aggressive mimicry is a form of mimicry in which predators, parasites, or parasitoids share similar signals, using a harmless model, allowing them to avoid being correctly identified by their prey or host. Zoologists have repeatedly compared this strategy to a wolf in sheep's clothing. In its broadest sense, aggressive mimicry could include various types of exploitation, as when an orchid exploits a male insect by mimicking a sexually receptive female, but will here be restricted to forms of exploitation involving feeding. For example, indigenous Australians who dress up as and imitate kangaroos when hunting would not be considered aggressive mimics, nor would a human angler, though they are undoubtedly practising self-decoration camouflage. Treated separately is molecular mimicry, which shares some similarity; for instance a virus may mimic the molecular properties of its host, allowing it access to its cells. An alternative term, Peckhamian mimicry, has been suggested, but it is seldom used.
Animal colouration is the general appearance of an animal resulting from the reflection or emission of light from its surfaces. Some animals are brightly coloured, while others are hard to see. In some species, such as the peafowl, the male has strong patterns, conspicuous colours and is iridescent, while the female is far less visible.
In evolutionary biology, Gilbertian mimicry is a rare type of mimicry involving only two species, a host or prey animal which is the mimic, and its parasite or predator, which is both the model for the mimicry, and the dupe that is deceived by it. The mechanism provides a measure of protection for the mimic, as parasites and predators rarely attack their own species.
Emsleyan mimicry, also called Mertensian mimicry, describes an unusual type of mimicry where a deadly prey mimics a less dangerous species.
Caudal luring is a form of aggressive mimicry characterized by the waving or wriggling of the predator's tail to attract prey. This movement attracts small animals who mistake the tail for a small worm or other small animal. When the animal approaches to prey on the worm-like tail, the predator will strike. This behavior has been recorded in snakes, sharks, and eels.
Chemical mimicry is a type of biological mimicry involving the use of chemicals to dupe an operator.
Cleaning symbiosis is a mutually beneficial association between individuals of two species, where one removes and eats parasites and other materials from the surface of the other. Cleaning symbiosis is well-known among marine fish, where some small species of cleaner fish, notably wrasses but also species in other genera, are specialised to feed almost exclusively by cleaning larger fish and other marine animals. Other cleaning symbioses exist between birds and mammals, and in other groups.
Adaptive Coloration in Animals is a 500-page textbook about camouflage, warning coloration and mimicry by the Cambridge zoologist Hugh Cott, first published during the Second World War in 1940; the book sold widely and made him famous.
Animal coloration provided important early evidence for evolution by natural selection, at a time when little direct evidence was available. Three major functions of coloration were discovered in the second half of the 19th century, and subsequently used as evidence of selection: camouflage ; mimicry, both Batesian and Müllerian; and aposematism.
Locomotor mimicry is a subtype of Batesian mimicry in which animals avoid predation by mimicking the movements of another species phylogenetically separated. This can be in the form of mimicking a less desirable species or by mimicking the predator itself. Animals can show similarity in swimming, walking, or flying of their model animals.
{{cite book}}
: CS1 maint: location missing publisher (link)