Tritrophic interactions in plant defense

Last updated
Ants attracted by the nutritional reward provided by extrafloral nectaries of a Drynaria quercifolia frond participate in a three-part interaction of plant, herbivorous insects, and themselves as predators. Ants on Drynaria.jpg
Ants attracted by the nutritional reward provided by extrafloral nectaries of a Drynaria quercifolia frond participate in a three-part interaction of plant, herbivorous insects, and themselves as predators.

Tritrophic interactions in plant defense against herbivory describe the ecological impacts of three trophic levels on each other: the plant, the herbivore, and its natural enemies. They may also be called multitrophic interactions when further trophic levels, such as soil microbes, endophytes, or hyperparasitoids (higher-order predators) are considered. [1] [2] Tritrophic interactions join pollination and seed dispersal as vital biological functions which plants perform via cooperation with animals. [3]

Contents

Natural enemies—predators, pathogens, and parasitoids that attack plant-feeding insects—can benefit plants by hindering the feeding behavior of the harmful insect. It is thought that many plant traits have evolved in response to this mutualism to make themselves more attractive to natural enemies. This recruitment of natural enemies functions to protect against excessive herbivory and is considered an indirect plant defense mechanism. [3] Traits attractive to natural enemies can be physical, as in the cases of domatia and nectaries; [1] or chemical, as in the case of induced plant volatile chemicals that help natural enemies pinpoint a food source. [4]

Humans can take advantage of tritrophic interactions in the biological control of insect pests.

Chemical mechanisms of enemy attraction

Plants produce secondary metabolites known as allelochemicals. Rather than participating in basic metabolic processes, they mediate interactions between a plant and its environment, often attracting, repelling, or poisoning insects. [5] [6] They also help produce secondary cell wall components such as those that require amino acid modification. [7]

In a tritrophic system, volatiles, which are released into the air, are superior to surface chemicals in drawing foraging natural enemies from afar. Plants also produce root volatiles which will drive tritrophic interactions between below-ground herbivores and their natural enemies. [8] Some plant volatiles can be smelled by humans and give plants like basil, eucalyptus, and pine their distinctive odors. [1] The mixture and ratios of individual volatiles emitted by a plant under given circumstances (also referred to as synomones in the context of natural enemy attraction) is referred to as a volatile profile. These are highly specific to certain plant species and are detectable meters from the source. Predators and parasitoids exploit the specificity of volatile profiles to navigate the complex infochemical signals presented by plants in their efforts to locate a particular prey species. [1]

The production of volatiles is likely to be beneficial given two conditions: that they are effective in attracting natural enemies and that the natural enemies are effective in removing or impeding herbivores. However, volatile chemicals may not have evolved initially for this purpose; they act in within-plant signaling, [9] attraction of pollinators, [10] or repulsion of herbivores that dislike such odors. [1]

Induced defenses

Jasmonic acid, a herbivore-induced plant volative, helps to attract natural enemies of plant pests. Jasmonic acid molecule ball.png
Jasmonic acid, a herbivore-induced plant volative, helps to attract natural enemies of plant pests.

When an herbivore starts eating a plant, the plant may respond by increasing its production of volatiles or changing its volatile profile. This plasticity is controlled by either the jasmonic acid pathway or the salicylic acid pathway, depending largely on the herbivore; these substances are often called herbivore-induced plant volatiles (HIPVs). [1] [4] The plant hormone jasmonic acid increases in concentration when plants are damaged and is responsible for inducing the transcription of enzymes that synthesize secondary metabolites. [7] This hormone also aids in the production of defensive proteins such as α-amylase inhibitors, as well as lectins. Since α-amylase breaks down starch, α-amylase inhibitors prevent insects from deriving nutrition from starch. [7] Lectins likewise interfere with insect nutrient absorption as they bind to carbohydrates. [7]  

Though volatiles of any kind have an attractive effect on natural enemies, this effect is stronger for damaged plants than for undamaged plants, [1] perhaps because induced volatiles signal definitive and recent herbivore activity. The inducibility gives rise to the idea that plants are sending out a "distress call" to the third trophic level in times of herbivore attack.

Natural enemies can distinguish between mechanical tissue damage, which might occur during events other than herbivory, and damage that is the direct result of insect feeding behavior. The presence of herbivore saliva or regurgitant mediates this differentiation, and the resulting chemical pathway leads to a stronger natural enemy response than mechanical damage could. [11] [12] [13] [14] The reliability of HIPVs in broadcasting the location of prey means that, for many foraging enemies, induced plant volatiles are more attractive than even the odors emitted by the prey insect itself. [15]

Plants are able to determine what types of herbivore species are present, and will react differently given the herbivore's traits. If certain defense mechanisms are not effective, plants may turn to attracting natural enemies of herbivore populations. For example, wild tobacco plants use nicotine, a neurotoxin, to defend against herbivores. However, when faced with nicotine-tolerant herbivores, they will attract natural enemies. [16]

Local and systemic signals

When herbivores trigger an inducible chemical defense pathway, the resulting HIPVs may be emitted either from the site of feeding damage (local induction) or from undamaged tissues belonging to a damaged plant (systemic induction). For example, when an herbivore feeds on a single corn seedling leaf, the plant will emit volatiles from all its leaves, whether or not they too have been damaged. Locally induced defenses aid parasitoids in targeting their foraging behaviors to the exact location of the herbivore on the plant. Systemic defenses are less spatially specific and may serve to confuse the enemy once the source plant is located. A plant might employ both local and systemic responses simultaneously. [1]

Morphological mechanisms of enemy attraction

Domatia

A hairless foveole domatium in the leaf underside of Guioa acutifolia Guioa acutifolia leaflet detail Kewarra 4493.jpg
A hairless foveole domatium in the leaf underside of Guioa acutifolia

Natural enemies must survive long enough and respond quickly enough to plant volatiles in order to benefit the plant through predatory behavior. Certain plant structures, called domatia, can selectively reinforce mutualisms with natural enemies and increase the fitness benefit they receive from that mutualism by ensuring the survival and proximity of natural enemies. Domatia provide a kind of housing or refuge for predators from both abiotic stressors, such as desiccation, and biotic stressors, such as predation from higher-order predators. Therefore, they not only ensure better survival, but eliminate the time required for natural enemies to locate and travel to the damaged plant. Natural enemies that make use of domatia are often said to serve as "bodyguards" for the plant on or in which they live. Domatia may be as well-developed as acacia tree thorns or as simple and incidental as a depression or crevice in a leaf stem, but they are distinguishable from galls and other similar structures in that they are not induced by the insect but formed constitutively by the plant. [1]

Nutritional rewards

As long as natural enemies have some potential to be omnivorous, plants can provide food resources to encourage their retention and increase the impact they have on herbivore populations. This potential, however, can hinge on a number of the insect's traits. For example, hemipteran predators can use their sucking mouthparts to make use of leaves, stems, and fruits, but spiders with chelicerae cannot. [17] Still, insects widely considered to be purely carnivorous have been observed to diverge from expected feeding behavior. [18] Some plants simply tolerate a low level of herbivory by natural enemies for the service they provide in ridding the plant of more serious herbivores. Others, however, have structures thought to serve no purpose other than attracting and provisioning natural enemies. These structures derive from a long history of coevolution between the first and third trophic levels. A good example is the extrafloral nectaries that many myrmecophytes and other angiosperms sport on leaves, bracts, stems, and fruits. Nutritionally, extrafloral nectaries are similar to floral nectaries, but they do not lead the visiting insect to come into contact with pollen. Their existence is therefore not the product of a pollinator–plant mutualism, but rather a tritrophic, defensive interaction. [17]

Herbivore sequestration of plant defensive compounds

Multitrophic interaction: Euphydryas editha taylori larvae sequester defensive compounds from specific types of plants they consume to protect themselves from bird predators Euphydryas editha taylori 2.jpg
Multitrophic interaction: Euphydryas editha taylori larvae sequester defensive compounds from specific types of plants they consume to protect themselves from bird predators

The field of chemical ecology has elucidated additional types of plant multitrophic interactions that entail the transfer of defensive compounds across multiple trophic levels. [19] For example, certain plant species in the Castilleja and Plantago genera have been found to produce defensive compounds called iridoid glycosides that are sequestered in the tissues of the Taylor's checkerspot butterfly larvae that have developed a tolerance for these compounds and are able to consume the foliage of these plants. [20] [21] These sequestered iridoid glycosides then confer chemical protection against bird predators to the butterfly larvae. [20] [21] Another example of this sort of multitrophic interaction in plants is the transfer of defensive alkaloids produced by endophytes living within a grass host to a hemiparasitic plant that is also using the grass as a host. [22]

Human uses

Companion planting controls pests partly by favouring natural enemies. KarottenZwiebeln 266.JPG
Companion planting controls pests partly by favouring natural enemies.

Exploitation of tritrophic interactions can benefit agricultural systems. Biocontrol of crop pests can be exerted by the third trophic level, given an adequate population of natural enemies. [24] [25] However, the widespread use of pesticides or Bt crops can undermine natural enemies’ success. [26] [27] [28] In some cases, populations of predators and parasitoids are decimated, necessitating even greater use of insecticide because the ecological service they provided in controlling herbivores has been lost.

Even when pesticides are not widely used, monocultures often have difficulty support natural enemies in great enough numbers for them to diminish pest populations.[ citation needed ] A lack of diversity in the first trophic level is linked to low abundance in the third because alternative resources that are necessary for stable, large natural enemy populations are missing from the system. Natural enemy diets can be subsidized by increasing landscape diversity through companion planting, border crops, cover crops, intercropping, or tolerance of some weed growth. [23] When nectar or other sugar-rich resources are provided, the natural enemy population thrives. [29]

Biological control

Morphological plant characteristics and natural enemy success

Glandular trichomes found on Drosera hartmeyerorum Hartmeyerorum Trichomes, Up Close (25885423933).jpg
Glandular trichomes found on Drosera hartmeyerorum

Beyond domatia and nutritional rewards, other plant characteristics influence the colonization of plants by natural enemies. These can include the physical size, shape, density, maturity, colour, and texture of a given plant species. Specific plant features such as the hairiness or glossiness of vegetation can have mixed effects on different natural enemies. For example, trichomes decrease hunting efficiency of many natural enemies, as trichomes tend to slow or prevent movement due to the physical obstacles they present or the adhesive secretions they produce. However, sometimes the prey species may be more impeded than the predator. For example, when the whitefly prey of the parasitoid Encarsia formosa is slowed by plant hairs, the parasitoid can detect and parasitize a higher number of juvenile whiteflies. [24]

Many predatory coccinelid beetles have a preference for the type of leaf surface they frequent. Presented with the opportunity to land on glossy or hairy Brassica oleracea foliage, the beetles prefer the glossy foliage as they are better able to cling to these leaves. Studies are evaluating the effect of various plant genotypes on natural enemies. [24]

Volatile organic compounds

Two ways the release of volatile organic compounds (VOCs) may benefit plants are the deterrence of herbivores and the attraction of natural enemies. [30] Synthetic products could replicate the distinct VOC profiles released by different plants; these products could be applied to plants suffering from pests that are targeted by the attracted natural enemy. [30] This could cause natural enemies to enter crops that are occupied by pest populations that would otherwise likely remain undetected by the natural enemies. [31]

The four elements that must be considered before manipulating VOCs are as follows: The VOCs must effectively aid the natural enemy in finding the prey; the pest must have natural enemies present; the fitness cost of potentially attracting more herbivores must be exceeded by attracting natural enemies; and the natural enemies must not be negatively affected by direct plant defenses that may be present. [32]

Extrafloral nectaries

A pair of extrafloral nectaries secreting nectar from a Passiflora edulis leaf Passiflora edulis - extrafloral nectaries 04.jpg
A pair of extrafloral nectaries secreting nectar from a Passiflora edulis leaf

The level of domestication of cotton plants correlates to indirect defense investment in the form of extrafloral nectaries. Wild varieties produce higher volumes of nectar and attract a wider variety of natural enemies. [33] Thus, the process of breeding new cotton varieties has overlooked natural resistance traits in the pursuit of high-yielding varieties that can be protected by pesticides. Plants bearing extrafloral nectaries have lower pest levels along with greater levels of natural enemies. [34] These findings illustrate the potential benefits that could be gained through incorporating the desirable genetics of wild varieties into cultivated varieties.

Domatia

Certain tropical plants host colonies of ants in their hollow domatia and provide the ants with nutrition delivered from nectaries or food bodies. These ant colonies have become dependent on the host plants for their survival and therefore actively protect the plant; this protection can take the form of killing or warding off pests, weeds, and certain fungal pathogens. Chinese citrus farmers have capitalized on this mutualistic relationship for many years by incorporating artificial ant nests into their crops to suppress pests. [35]

Parasitoids

A Brazilian parasitoid wasp raising its ovipositor. Red monomachidae wasp from Brazil.jpg
A Brazilian parasitoid wasp raising its ovipositor.

Parasitoids have successfully been incorporated into biological pest control programs for many years. Plants can influence the effect of parasitoids on herbivores by releasing chemical cues that attract parasitoids and by providing food sources or domatia. [1] Certain parasitoids may be dependent on this plant relationship. Therefore, in agricultural areas where parasitoid presence is desired, ensuring the crops being grown meet all of these requirements is likely to promote higher parasitoid populations and better pest control. [31]

Parasitized aphids with visible parasitoid wasp exit holes. Aphids - Family Aphididae - parasitized by parasitoid wasps - aphidiids - Subfamily Aphidiinae - Blattlaus - Blattlauswespe - 05.jpg
Parasitized aphids with visible parasitoid wasp exit holes.

In a sugar beet crop, when only beets were grown, few aphids were parasitized. However, when collard crops were grown next to the sugar beets, parasitism of aphids increased. Collard crops release more VOCs than sugar beets. As a result, the companion collard plants attract more aphid parasitoids, which kill aphids in both the collard and the nearby sugar beets. [36]

In a related study, ethylene and other compounds released by rice plants in response to brown planthopper feeding attracted a facultative parasitoid that parasitizes brown planthopper eggs. [30]

In another study, the presence of plant extrafloral nectaries in cotton crops caused parasitoids to spend more time in the cotton and led to the parasitization of more moth larva than in cotton crops with no nectaries. Since the publication of this study, most farmers have switched to cotton varieties with nectaries. [37] A separate study found that a naturalized cotton variety emitted seven times more VOCs than cultivated cotton varieties when experiencing feeding damage. [38] It is unknown whether this generalizes to other crops; there are cases of other crops that do not show the same trend. [31]

These findings reveal the specific variables a farmer can manipulate to influence parasitoid populations and illustrate the potential impact parasitoid habitat management can have on pest control. [31] In the case of cotton and other similar high-VOC crop scenarios, there is interest in genetically engineering the chemical pathways of cultivated varieties to selectively produce the high VOC's that were observed in the naturalized varieties in order to attract greater natural enemy populations. This presents challenges but could produce promising pest control opportunities. [39]

Insect pathogens

A fly infected by a Cordyceps entomopathogenic fungi with fruiting body structures present Fly infected by Cordyceps entomopathogenic fungus (36846012473).jpg
A fly infected by a Cordyceps entomopathogenic fungi with fruiting body structures present

Entomopathogens are another group of organisms that are influenced by plants. The extent of the influence largely depends on the evolutionary history shared between the two and the pathogens' method of infection and survival duration outside of a host. Different insect host plants contain compounds that cause modulate insect mortality when certain entomopathogens are simultaneously injected. Increases in mortality of up to 50-fold have been recorded. However, certain plants influence entomopathogens in negative ways, reducing their efficacy. [40]

It is primarily the leaf surface of the plant that influences the entomopathogen; plants can release various exudates, phytochemicals, and alleolochemicals through their leaves, some of which have the ability to inactivate certain entomopathogens. [40] In contrast, in other plant species, leaf characteristics can increase the efficacy of entomopathogens. For example, the mortality of pea aphids was higher in the group of aphids that were found on plants with fewer wax exudates than in those on plants with more wax exudates. This reduced waxiness increases the transmission of Pandora neoaphidus conidia from the plant to the aphids. [41]

Feeding-induced volatiles emitted by different plants increase the amount of spores released by certain entomopathogenic fungi, increasing the likelihood of infection of some herbivores but not others. Plants can also influence pathogen efficacy indirectly, and this typically occurs either by increasing the susceptibility of the herbivore hosts or by changing their behavior. This influence can often take the form of altered growth rates, herbivore physiology, or feeding habits. Thus, there are various ways that host plant species can influence entomopathogenic interactions. [40]

In one study, brassicas were found to defend themselves by acting as a vector for entomopathogens. Virus-infected aphids feeding on the plants introduce a virus into the phloem. The virus is passively transported in the phloem and carried throughout the plant. This causes aphids feeding apart from the infected aphids to become infected as well. This finding offers the possibility of injecting crops with compatible entomopathogenic viruses to defend against susceptible insect pests. [42]

Below-ground tritrophic interactions

Less studied than above-ground interactions, but proving to be increasingly important, are the below-ground interactions that influence plant defense. [43] There is a complex network of signal transduction pathways involved in plant responses to stimuli, and soil microbes can influence these responses. Certain soil microbes aid plant growth, producing increased tolerance to various environmental stressors, and can protect their host plants from many different pathogens by inducing systemic resistance. [44] Organisms in above- and below-ground environments can interact indirectly through plants. Many studies have shown both the positive and negative effects that one organism in one environment can have on other organisms in the same or opposite environment, with the plant acting as the intermediary. [43]

A mycorhizal association with a plant root Mycorhizae fungus (10333483254).jpg
A mycorhizal association with a plant root

The colonization of plant roots with mycorhizae typically results in a mutualistic relationship between the plant and the fungus, inducing a number of changes in the plant. Such colonization has a mixed impact on herbivores; insects with different feeding methods are affected differently, some positively and others negatively. [45] The mycorhizal species involved also matters. One common species, Rhizophagus irregularis, has been observed to have a negative effect on the feeding success of chewing herbivores, whereas other species studied have positive effects. [45]

The roots of some maize plants produce a defense chemical when roots are damaged by leaf beetle larvae; this chemical attracts the entomopathogenic nematode species Heterorhabditis megidis . Only certain maize varieties produce this chemical; plants that release the chemical see up to five times as much parasitization of leaf beetle larvae as those that do not. Incorporating these varieties or their genes into commercial maize production could increase the efficacy of nematode treatments. [46]

Further studies suggest that the plant-emitted chemicals act as the primary source of attractant to the nematodes. Herbivores are believed to have evolved to evade detection on the part of the nematodes, whereas the plants have evolved to release highly attractive chemical signals. A high degree of specificity is involved; species that make up these tritrophic interactions have evolved with one another over a long period of time and as a result have close interrelationships. [47]

Microorganisms can also influence tritrophic interactions. The bacterium Klebsiella aerogenes produces the volatile 2,3-butanediol, which modulates interactions between plants, pathogens, and insects. [48] When maize plants are grown in a soil culture containing the bacterium or the plants are inoculated with the bacterium, the maize is more resistant to the fungus Setosphaeria turcica . [48] The bacterium does not deter insect herbivory; it actually increases weight gain and leaf consumption in the caterpillar Spodoptera littoralis. [48] However, the parasitic wasp Cotesia marginiventris is attracted more readily to maize plants grown in soil cultures containing either the volatile-producing bacterium or pure 2,3-butanediol. [48]

Considerations in utilizing tritrophic interactions in biological control

Sustainable crop production is becoming increasingly important, if humans are to support a growing population and avoid a collapse of production systems. [49] While the understanding and incorporation of tritrophic interactions in pest control offers a promising control option, the sustainable biological control of pests requires a dynamic approach that involves diversity in all of the species present, richness in natural enemies, and limited adverse activity (i.e., minimal pesticide use). This approach is especially important in conservation biological control efforts. [50]

There are typically more than three trophic levels at play in a given production setting, so the tritrophic interaction model may represent an oversimplification. [31] Furthermore, ecological complexity and interactions between species of the same trophic level can come into play. Research thus far has had a relatively narrow focus, which may be suitable for controlled environments such as greenhouses but which has not yet addressed multi-generational plant interactions with dynamic communities of organisms. [51]

Related Research Articles

<span class="mw-page-title-main">Herbivore</span> Organism that eats mostly or exclusively plant material

A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthparts adapted to rasping or grinding. Horses and other herbivores have wide flat teeth that are adapted to grinding grass, tree bark, and other tough plant material.

<span class="mw-page-title-main">Companion planting</span> Agricultural technique

Companion planting in gardening and agriculture is the planting of different crops in proximity for any of a number of different reasons, including weed suppression, pest control, pollination, providing habitat for beneficial insects, maximizing use of space, and to otherwise increase crop productivity. Companion planting is a form of polyculture.

<span class="mw-page-title-main">Biological pest control</span> Controlling pests using other organisms

Biological control or biocontrol is a method of controlling pests, whether pest animals such as insects and mites, weeds, or pathogens affecting animals or plants by using other organisms. It relies on predation, parasitism, herbivory, or other natural mechanisms, but typically also involves an active human management role. It can be an important component of integrated pest management (IPM) programs.

<span class="mw-page-title-main">Aphid</span> Superfamily of insects

Aphids are small sap-sucking insects and members of the superfamily Aphidoidea. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

<span class="mw-page-title-main">Lima bean</span> Species of plant

A lima bean, also commonly known as butter bean, sieva bean, double bean or Madagascar bean, is a legume grown for its edible seeds or beans.

Chemical ecology is the study of chemically mediated interactions between living organisms, and the effects of those interactions on the demography, behavior and ultimately evolution of the organisms involved. It is thus a vast and highly interdisciplinary field. Chemical ecologists seek to identify the specific molecules that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The substances that serve in such roles are typically small, readily-diffusible organic molecules, but can also include larger molecules and small peptides.

<span class="mw-page-title-main">Myrmecophyte</span> Plants that live in association with ants

Myrmecophytes are plants that live in a mutualistic association with a colony of ants. There are over 100 different genera of myrmecophytes. These plants possess structural adaptations that provide ants with food and/or shelter. These specialized structures include domatia, food bodies, and extrafloral nectaries. In exchange for food and shelter, ants aid the myrmecophyte in pollination, seed dispersal, gathering of essential nutrients, and/or defense. Specifically, domatia adapted to ants may be called myrmecodomatia.

<i>Vachellia cornigera</i> Species of legume

Vachellia cornigera, commonly known as bullhorn acacia, is a swollen-thorn tree and Myrmecophyte native to Mexico and Central America. The common name of "bullhorn" refers to the enlarged, hollowed-out, swollen thorns that occur in pairs at the base of leaves, and resemble the horns of a steer. In Yucatán it is called "subín", in Panamá the locals call them "cachito". The trees are commonly found in wet lowlands

<span class="mw-page-title-main">Nectar</span> Sugar-rich liquid produced by many flowering plants, that attracts pollinators and insects

Nectar is a viscous, sugar-rich liquid produced by plants in glands called nectaries or nectarines, either within the flowers with which it attracts pollinating animals, or by extrafloral nectaries, which provide a nutrient source to animal mutualists, which in turn provide herbivore protection. Common nectar-consuming pollinators include mosquitoes, hoverflies, wasps, bees, butterflies and moths, hummingbirds, honeyeaters and bats. Nectar plays a crucial role in the foraging economics and evolution of nectar-eating species; for example, nectar foraging behavior is largely responsible for the divergent evolution of the African honey bee, A. m. scutellata and the western honey bee.

<span class="mw-page-title-main">Plant defense against herbivory</span> Plants defenses against being eaten

Plant defense against herbivory or host-plant resistance (HPR) is a range of adaptations evolved by plants which improve their survival and reproduction by reducing the impact of herbivores. Many plants produce secondary metabolites, known as allelochemicals, that influence the behavior, growth, or survival of herbivores. These chemical defenses can act as repellents or toxins to herbivores or reduce plant digestibility. Another defensive strategy of plants is changing their attractiveness. Plants can sense being touched, and they can respond with strategies to defend against herbivores. To prevent overconsumption by large herbivores, plants alter their appearance by changing their size or quality, reducing the rate at which they are consumed.

<i>Vachellia collinsii</i> Species of legume

Vachellia collinsii, previously Acacia collinsii, is a species of flowering plant native to Central America and parts of Africa.

Herbivores are dependent on plants for food, and have coevolved mechanisms to obtain this food despite the evolution of a diverse arsenal of plant defenses against herbivory. Herbivore adaptations to plant defense have been likened to "offensive traits" and consist of those traits that allow for increased feeding and use of a host. Plants, on the other hand, protect their resources for use in growth and reproduction, by limiting the ability of herbivores to eat them. Relationships between herbivores and their host plants often results in reciprocal evolutionary change. When a herbivore eats a plant it selects for plants that can mount a defensive response, whether the response is incorporated biochemically or physically, or induced as a counterattack. In cases where this relationship demonstrates "specificity", and "reciprocity", the species are thought to have coevolved. The escape and radiation mechanisms for coevolution, presents the idea that adaptations in herbivores and their host plants, has been the driving force behind speciation. The coevolution that occurs between plants and herbivores that ultimately results in the speciation of both can be further explained by the Red Queen hypothesis. This hypothesis states that competitive success and failure evolve back and forth through organizational learning. The act of an organism facing competition with another organism ultimately leads to an increase in the organism's performance due to selection. This increase in competitive success then forces the competing organism to increase its performance through selection as well, thus creating an "arms race" between the two species. Herbivores evolve due to plant defenses because plants must increase their competitive performance first due to herbivore competitive success.

<span class="mw-page-title-main">Myrmecophily</span> Positive interspecies associations between ants and other organisms

Myrmecophily is the term applied to positive interspecies associations between ants and a variety of other organisms, such as plants, other arthropods, and fungi. Myrmecophily refers to mutualistic associations with ants, though in its more general use, the term may also refer to commensal or even parasitic interactions.

<span class="mw-page-title-main">DIMBOA</span> Chemical compound

DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) is a naturally occurring hydroxamic acid, a benzoxazinoid. DIMBOA is a powerful antibiotic present in maize, wheat, rye, and related grasses,

Green leaf volatiles (GLV) are organic compounds released by plants. Some of these chemicals function as signaling compounds between either plants of the same species, of other species, or even different lifeforms like insects.

<span class="mw-page-title-main">Chemical defense</span>

Chemical defense is a strategy employed by many organisms to avoid consumption by producing toxic or repellent metabolites or chemical warnings which incite defensive behavioral changes. The production of defensive chemicals occurs in plants, fungi, and bacteria, as well as invertebrate and vertebrate animals. The class of chemicals produced by organisms that are considered defensive may be considered in a strict sense to only apply to those aiding an organism in escaping herbivory or predation. However, the distinction between types of chemical interaction is subjective and defensive chemicals may also be considered to protect against reduced fitness by pests, parasites, and competitors. Repellent rather than toxic metabolites are allomones, a sub category signaling metabolites known as semiochemicals. Many chemicals used for defensive purposes are secondary metabolites derived from primary metabolites which serve a physiological purpose in the organism. Secondary metabolites produced by plants are consumed and sequestered by a variety of arthropods and, in turn, toxins found in some amphibians, snakes, and even birds can be traced back to arthropod prey. There are a variety of special cases for considering mammalian antipredatory adaptations as chemical defenses as well.

<span class="mw-page-title-main">Plant use of endophytic fungi in defense</span>

Plant use of endophytic fungi in defense occurs when endophytic fungi, which live symbiotically with the majority of plants by entering their cells, are utilized as an indirect defense against herbivores. In exchange for carbohydrate energy resources, the fungus provides benefits to the plant which can include increased water or nutrient uptake and protection from phytophagous insects, birds or mammals. Once associated, the fungi alter nutrient content of the plant and enhance or begin production of secondary metabolites. The change in chemical composition acts to deter herbivory by insects, grazing by ungulates and/or oviposition by adult insects. Endophyte-mediated defense can also be effective against pathogens and non-herbivory damage.

<i>Hydnophytum formicarum</i> Species of plant

Hydnophytum formicarum, commonly called a "Baboon's head" or "Ant plant", is an epiphyte native to Southeast Asia and is considered critically endangered in Singapore. It is a myrmecophyte as ants live in its tuber, also known as a caudex, and pollinate its flowers. It resides in open-canopied areas, rainforests, and terrestrial regions of high elevation.

<i>Scaptomyza flava</i> Species of fly

Scaptomyza flava is an herbivorous leaf mining fly species in the family Drosophilidae. In Latin, flava means golden or yellow. The fly is amber to dark brown in color and approximately 2.5 mm in length. In Europe and New Zealand the larvae are pests of plants in the order Brassicales, including arugula, brassicas, broccoli, Brussels sprouts, bok choy, cabbage, canola, cauliflower, horseradish, kale, kohlrabi, napa cabbage, nasturtium, radish, rapini, rutabaga, turnip, wasabi and watercress. In New Zealand, its range has expanded to include host species that are intercropped with salad brassicas, including gypsophila, otherwise known as baby's breath, which is in the pink family (Caryophyllaceae) and the pea in the Fabaceae. More typically, S. flava is oligophagous within the Brassicales. Scaptomyza are unusual within the Drospophilidae because the group includes species that are truly herbivorous. Other herbivorous drosophilids include D. suzukii, which attacks fruit very early during ripening and species within the genus Lordiphosa, from Africa and Asia, which also include leaf miners. Most drosophilids feed on microbes associated with decaying vegetation and sap fluxes.

Trichogramma japonicum is a minute wasp parasitoid from the Trichogrammatidae family in the order Hymenoptera. T. japonicum parasitizes the eggs of many pest species, especially Lepidoptera found in many monocultures. They are entomophagous parasitoids that deposit their eggs inside the host species' egg, consuming the host egg material and emerging from the egg once development is complete. T. japonicum can be found naturally in rice ecosystems, but are dispersed commercially to many monocultures as a biological control. The mitochondrial genomes of T. japonicum are significantly rearranged when comparing it to related insects.

References

  1. 1 2 3 4 5 6 7 8 9 10 Price, Peter W. (2011). Insect Ecology : Behavior, Populations and Communities (4th ed.). Cambridge: Cambridge University Press. ISBN   978-0-521-83488-9.
  2. Lehtonen, Päivi; Helander, Marjo; Wink, Michael; Sporer, Frank; Saikkonen, Kari (12 October 2005). "Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant". Ecology Letters . 8 (12): 1256–1263. Bibcode:2005EcolL...8.1256L. doi: 10.1111/j.1461-0248.2005.00834.x .
  3. 1 2 Heil, Martin (2008). "Indirect defence via tritrophic interactions". New Phytologist . 178 (1): 41–61. doi: 10.1111/j.1469-8137.2007.02330.x . PMID   18086230.
  4. 1 2 Karban, Richard (2011). "The ecology and evolution of induced resistance against herbivores". Functional Ecology . 25 (2): 339–347. Bibcode:2011FuEco..25..339K. doi: 10.1111/j.1365-2435.2010.01789.x .
  5. Fraenkel, G. S. (29 May 1959). "The Raison d'Etre of Secondary Plant Substances: These odd chemicals arose as a means of protecting plants from insects and now guide insects to food". Science. 129 (3361): 1466–1470. Bibcode:1959Sci...129.1466F. doi:10.1126/science.129.3361.1466. PMID   13658975.
  6. Whittaker, R. H.; Feeny, P. P. (26 February 1971). "Allelochemics: Chemical Interactions between Species". Science. 171 (3973): 757–770. Bibcode:1971Sci...171..757W. doi:10.1126/science.171.3973.757. PMID   5541160.
  7. 1 2 3 4 Taiz, Lincoln (2018). Fundamentals of Plant Physiology. New York United States: Oxford University Press. pp. 520–521.
  8. Rasmann, Sergio; Köllner, Tobias G.; Degenhardt, Jörg; Hiltpold, Ivan; Toepfer, Stefan; Kuhlmann, Ulrich; Gershenzon, Jonathan; Turlings, Ted C. J. (7 April 2005). "Recruitment of entomopathogenic nematodes by insect-damaged maize roots" (PDF). Nature. 434 (7034): 732–737. Bibcode:2005Natur.434..732R. doi:10.1038/nature03451. PMID   15815622. S2CID   4104266.
  9. Frost, Christopher J.; Appel, Heidi M.; Carlson, John E.; De Moraes, Consuelo M.; Mescher, Mark C.; Schultz, Jack C. (2007). "Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores". Ecology Letters. 10 (6): 490–498. Bibcode:2007EcolL..10..490F. doi:10.1111/j.1461-0248.2007.01043.x. PMID   17498148.
  10. Kessler, D.; Gase, K.; Baldwin, I. T. (29 August 2008). "Field Experiments with Transformed Plants Reveal the Sense of Floral Scents". Science. 321 (5893): 1200–1202. Bibcode:2008Sci...321.1200K. doi:10.1126/science.1160072. PMID   18755975. S2CID   206513974.
  11. Turlings, T. C. J.; Tumlinson, J. H.; Lewis, W. J. (30 November 1990). "Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps" (PDF). Science. 250 (4985): 1251–1253. Bibcode:1990Sci...250.1251T. doi:10.1126/science.250.4985.1251. PMID   17829213. S2CID   13430669.
  12. Mattiacci, Letizia; Dicke, Marcel; Posthumus, Maarten A. (1994). "Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor". Journal of Chemical Ecology. 20 (9): 2229–2247. Bibcode:1994JCEco..20.2229M. doi:10.1007/BF02033199. PMID   24242803. S2CID   6121052.
  13. Halitschke, R.; Keßler, A.; Kahl, J.; Lorenz, A.; Baldwin, I. T. (23 August 2000). "Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata". Oecologia. 124 (3): 408–417. Bibcode:2000Oecol.124..408H. doi:10.1007/s004420000389. PMID   28308780. S2CID   5034158.
  14. Röse, Ursula S. R.; Tumlinson, James H. (22 April 2005). "Systemic induction of volatile release in cotton: How specific is the signal to herbivory?". Planta. 222 (2): 327–335. Bibcode:2005Plant.222..327R. doi:10.1007/s00425-005-1528-2. PMID   15856281. S2CID   13438362.
  15. Steinberg, Shimon; Dicke, Marcel; Vet, Louise E. M. (1993). "Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoidCotesia glomerata". Journal of Chemical Ecology. 19 (1): 47–59. Bibcode:1993JCEco..19...47S. doi:10.1007/BF00987470. PMID   24248510. S2CID   797047.
  16. Taiz, Lincoln (2018). Fundamentals of Plant Physiology. New York, NY: Oxford University Press USA. p. 511.
  17. 1 2 Price, Peter W. (2011). Insect Ecology : Behavior, Populations and Communities (4th ed.). Cambridge: Cambridge University Press. ISBN   978-0-521-83488-9.
  18. Rubinoff, D. (22 July 2005). "Web-Spinning Caterpillar Stalks Snails". Science. 309 (5734): 575. doi:10.1126/science.1110397. PMID   16040699. S2CID   42604851.
  19. Tscharntke, Teja; Hawkins, Bradford A. (2002). Multitrophic Level Interactions. Cambridge: Cambridge University Press. pp. 10, 72. ISBN   978-0-511-06719-8.
  20. 1 2 Haan, Nate L.; Bakker, Jonathan D.; Bowers, M. Deane (14 January 2021). "Preference, performance, and chemical defense in an endangered butterfly using novel and ancestral host plants". Scientific Reports. 11 (992): 992. Bibcode:2021NatSR..11..992H. doi:10.1038/s41598-020-80413-y. PMC   7809109 . PMID   33446768.
  21. 1 2 Haan, Nate L.; Bakker, Jonathan D.; Bowers, M. Deane (May 2018). "Hemiparasites can transmit indirect effects from their host plants to herbivores". Ecology. 99 (2): 399–410. Bibcode:2018Ecol...99..399H. doi:10.1002/ecy.2087. JSTOR   26624251. PMID   29131311 . Retrieved 2022-05-02.
  22. Lehtonen, Päivi; Helander, Marjo; Wink, Michael; Sporer, Frank; Saikkonen, Kari (12 October 2005). "Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant". Ecology Letters. 8 (12): 1256–1263. Bibcode:2005EcolL...8.1256L. doi: 10.1111/j.1461-0248.2005.00834.x .
  23. 1 2 Landis, Douglas A.; Wratten, Stephen D.; Gurr, Geoff M. (2000). "Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture". Annual Review of Entomology. 45 (1): 175–201. doi:10.1146/annurev.ento.45.1.175. PMID   10761575.
  24. 1 2 3 Bottrell, Dale G.; Barbosa, Pedro; Gould, Fred (1998). "Manipulating Natural Enemies By Plant Variety Selection and Modification: A Realistic Strategy?". Annual Review of Entomology. 43 (1): 347–367. doi:10.1146/annurev.ento.43.1.347. PMID   15012394.
  25. Cortesero, A.M.; Stapel, J.O.; Lewis, W.J. (2000). "Understanding and Manipulating Plant Attributes to Enhance Biological Control". Biological Control. 17 (1): 35–49. Bibcode:2000BiolC..17...35C. CiteSeerX   10.1.1.337.1094 . doi:10.1006/bcon.1999.0777.
  26. Obrycki, John J. (2001). "Transgenic Insecticidal Corn: Beyond Insecticidal Toxicity to Ecological Complexity Analysis of transgenic insecticidal corn developed for lepidopteran pests reveals that the potential benefits of crop genetic engineering for insect pest management may not outweigh the potential ecological and economic risks". BioScience. 51 (5): 353–361. doi: 10.1641/0006-3568(2001)051[0353:TICBIT]2.0.CO;2 .
  27. Groot, Astrid T.; Dicke, Marcel (2002). "Insect-resistant transgenic plants in a multi-trophic context". The Plant Journal. 31 (4): 387–406. doi: 10.1046/j.1365-313X.2002.01366.x . PMID   12182699.
  28. Poppy, Guy M.; Sutherland, Jamie P. (2004). "Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plants". Physiological Entomology. 29 (3): 257–268. doi:10.1111/j.0307-6962.2004.00382.x. S2CID   59330885.
  29. Wäckers, edited by F.L.; Rijn, P.C.J. van; Bruin, J. (2005). Plant-provided food for carnivorous insects : protective mutualism and its applications (1. paperback ed.). New York: Cambridge University Press. ISBN   978-0521819411.{{cite book}}: |first= has generic name (help)
  30. 1 2 3 Nurindah, N., Wonorahardjo, S., Sunarto, D. A., Sujak, S. (2017). "Chemical Cues In Tritrophic Interactions On Biocontrol Of Insect Pest". The Journal of Pure and Applied Chemistry Research. 6 (1): 49–56. doi: 10.21776/ub.jpacr.2017.006.01.282 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. 1 2 3 4 5 Poppy, G. M. (1997). "Tritrophic interactions: Improving ecological understanding and biological control?". Endeavour. 21 (2): 61–65. doi:10.1016/S0160-9327(97)01042-9.
  32. Kessler, A., Baldwin, I. T. (2002). "Plant-Mediated Tritrophic Interactions and Biological Pest Control". AgBiotechNet. 4 via Research Gate.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. Llandres, A. L., Verdeny-Vilalta, O., Jean, J., Goebel, F., Seydi, O., Brevault, T. (2019). "Cotton Extrafloral Nectaries as Indirect Defence Against Insect Pests". Basic and Applied Ecology. 37: 24–34. doi:10.1016/j.baae.2019.05.001. S2CID   181342207 via Elsevier Science Direct.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. Mathews, Clarissa R.; Bottrell, Dale G.; Brown, Mark W. (1 February 2011). "Interactions Between Extrafloral Nectaries, Ants (Hymenoptera: Formicidae), and Other Natural Enemies Affect Biological Control of Grapholita molesta (Lepidoptera: Tortricidae) on Peach (Rosales: Rosaceae)". Environmental Entomology. 40 (1): 42–51. doi:10.1603/EN10161.
  35. Heil, M. (2008). "Indirect Defence via Tritrophic Interactions". The New Phytologist. 178 (1): 41–61. doi: 10.1111/j.1469-8137.2007.02330.x . PMID   18086230 via JSTOR.
  36. Read, D. P., Feeny, P. P., Root, R. B. (1970). "Habitat Selection By The Aphid Parasite Diaeretiella Rapae (Hymenoptera: Braconidae) And Hyperparasite Charips Brassicae (Hymenoptera: Cynipidae)". The Canadian Entomologist. 102 (12): 1567–1578. doi:10.4039/Ent1021567-12. S2CID   84949921.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. Stapel, J. O., Cortesero, A. M., DeMoraes, C. R., Tumlinson, J. H. and Lewis, W. J. (1996). "Extrafloral Nectar, Honeydew, and Sucrose Effects on Searching Behavior and Efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in Cotton". Environmental Entomology. 26 (3): 617–623. doi: 10.1093/ee/26.3.617 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. Loughrin, J. H., Manukian, A., Heath, R. R., Tumlinson, J. H. (1995). "Volatiles Emitted by Different Cotton Varieties Damaged by Feeding Beet Armyworm Larvae". Journal of Chemical Ecology. 21 (8): 1217–1227. Bibcode:1995JCEco..21.1217L. doi:10.1007/BF02228321. PMID   24234527. S2CID   35273594.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. Poppy, Guy M.; Sutherland, Jamie P. (2004). "Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plants". Physiological Entomology. 29 (3): 257–268. doi:10.1111/j.0307-6962.2004.00382.x. S2CID   59330885.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. 1 2 3 Cory, J. S., Hoover, K. (2006). "Plant-Mediated Effects in Insect-Pathogen Interactions". Trends in Ecology & Evolution. 21 (5): 278–286. doi:10.1016/j.tree.2006.02.005. PMID   16697914.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. Duetting, P. S., Eigenbrode, S. D. (2003). "Plant Waxy Bloom on Peas Affects Infection of Pea Aphids by Pandora neoaphidus". Invertebrate Pathology. 84 (3): 149–158. doi:10.1016/j.jip.2003.10.001. PMID   14726238.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. Van Munster, M., Janssen, A., Clerivet, A., Van Den Heuvel, J. (2005). "Can Plants Use an Entomopathogenic Virus as a Defense Against Herbivores?". Plant Animal Interactions. 143 (3): 396–401. Bibcode:2005Oecol.143..396V. doi:10.1007/s00442-004-1818-6. PMID   15723235. S2CID   29076492.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. 1 2 Van Geem, M., Gols, R., Van Dam, N. M., Van Der Putten, W. H., Fortuna, T., Harvey, J. A. (2013). "The Importance of Aboveground–Belowground Interactions on the Evolution and Maintenance of Variation in Plant Defense Traits". Frontiers in Plant Science. 28: 431. doi: 10.3389/fpls.2013.00431 . PMC   3842511 . PMID   24348484.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. Pineda, A., Dicke, M., Pieterse, C. M. J., Pozo, M. J. (2013). "Beneficial microbes in a changing environment: are they always helping plants to deal with insects?". Functional Ecology. 27 (3): 574–586. Bibcode:2013FuEco..27..574P. doi:10.1111/1365-2435.12050. hdl: 1874/276314 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. 1 2 Koricheva, J., Gange, A. C., Jones, T. (2009). "Effects of Mycorrhizal Fungi on Insect Herbivores: A Meta-Analysis". Ecology. 90 (8): 2088–2097. Bibcode:2009Ecol...90.2088K. doi:10.1890/08-1555.1. PMID   19739371 via NCBI PubMed.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., Turlings, T. C. J. (2005). "Recruitment of Entomopathogenic Nematodes by Insect-Damaged Maize Roots". Nature. 434 (7034): 732–737. Bibcode:2005Natur.434..732R. doi:10.1038/nature03451. PMID   15815622. S2CID   4104266.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. Rasmann, S., Turlings, T. C. J. (2008). "First Insights Into Specificity of Belowground Tritrophic Interactions" (PDF). OIKOS. 117 (3): 362–369. Bibcode:2008Oikos.117..362R. doi:10.1111/j.2007.0030-1299.16204.x.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. 1 2 3 4 Alessandro, Marco (2014). "Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions". Plant, Cell and Environment. 37 (4): 813–826. doi:10.1111/pce.12220. PMC   4194311 . PMID   24127750.
  49. Berg, G. (2009). "Plant–Microbe Interactions Promoting Plant Growth and Health: Perspectives for Controlled Use of Microorganisms in Agriculture". Applied Microbiology and Biotechnology. 84 (1): 11–18. doi:10.1007/s00253-009-2092-7. PMID   19568745. S2CID   3330216.
  50. Gardarin, A., Plantegenest, M., Bischoff. A., Valantin-Morison, M. (2018). "Understanding plant–arthropod interactions in multitrophic communities to improve conservation biological control: useful traits and metrics" (PDF). Journal of Pest Science. 91 (3): 943–955. doi:10.1007/s10340-018-0958-0. S2CID   43962364.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. Van Veen, F. (2015). "Plant-modified Trophic Interactions". Current Opinion in Insect Science. 8: 29–33. doi:10.1016/j.cois.2015.02.009. hdl: 10871/17566 . PMID   32846667 via Elsevier Science Direct.