This article may require copy editing for grammar, style, cohesion, tone, or spelling.(June 2024) |
In theoretical ecology and nonlinear dynamics, consumer-resource models (CRMs) are a class of ecological models in which a community of consumer species compete for a common pool of resources. Instead of species interacting directly, all species-species interactions are mediated through resource dynamics. Consumer-resource models have served as fundamental tools in the quantitative development of theories of niche construction, coexistence, and biological diversity. These models can be interpreted as a quantitative description of a single trophic level. [1] [2]
A general consumer-resource model consists of M resources whose abundances are and S consumer species whose populations are . A general consumer-resource model is described by the system of coupled ordinary differential equations,where , depending only on resource abundances, is the per-capita growth rate of species , and is the growth rate of resource . An essential feature of CRMs is that species growth rates and populations are mediated through resources and there are no explicit species-species interactions. Through resource interactions, there are emergent inter-species interactions.
Originally introduced by Robert H. MacArthur [3] and Richard Levins, [4] consumer-resource models have found success in formalizing ecological principles and modeling experiments involving microbial ecosystems. [5] [6]
Niche models are a notable class of CRMs which are described by the system of coupled ordinary differential equations, [7] [8]
where is a vector abbreviation for resource abundances, is the per-capita growth rate of species , is the growth rate of species in the absence of consumption, and is the rate per unit species population that species depletes the abundance of resource through consumption. In this class of CRMs, consumer species' impacts on resources are not explicitly coordinated; however, there are implicit interactions.
The MacArthur consumer-resource model (MCRM), named after Robert H. MacArthur, is a foundational CRM for the development of niche and coexistence theories. [9] [10] The MCRM is given by the following set of coupled ordinary differential equations: [11] [12] [8] where is the relative preference of species for resource and also the relative amount by which resource is depleted by the consumption of consumer species ; is the steady-state carrying capacity of resource in absence of consumption (i.e., when is zero); and are time-scales for species and resource dynamics, respectively; is the quality of resource ; and is the natural mortality rate of species . This model is said to have self-replenishing resource dynamics because when , each resource exhibits independent logistic growth. Given positive parameters and initial conditions, this model approaches a unique uninvadable steady state (i.e., a steady state in which the re-introduction of a species which has been driven to extinction or a resource which has been depleted leads to the re-introduced species or resource dying out again). [7] Steady states of the MCRM satisfy the competitive exclusion principle: the number of coexisting species is less than or equal to the number of non-depleted resources. In other words, the number of simultaneously occupiable ecological niches is equal to the number of non-depleted resources.
The externally supplied resource model is similar to the MCRM except the resources are provided at a constant rate from an external source instead of being self-replenished. This model is also sometimes called the linear resource dynamics model. It is described by the following set of coupled ordinary differential equations: [11] [8] where all the parameters shared with the MCRM are the same, and is the rate at which resource is supplied to the ecosystem. In the eCRM, in the absence of consumption, decays to exponentially with timescale . This model is also known as a chemostat model.
The Tilman consumer-resource model (TCRM), named after G. David Tilman, is similar to the externally supplied resources model except the rate at which a species depletes a resource is no longer proportional to the present abundance of the resource. The TCRM is the foundational model for Tilman's R* rule. It is described by the following set of coupled ordinary differential equations: [8] where all parameters are shared with the MCRM. In the TCRM, resource abundances can become nonphysically negative. [7]
The microbial consumer resource model describes a microbial ecosystem with externally supplied resources where consumption can produce metabolic byproducts, leading to potential cross-feeding. It is described by the following set of coupled ODEs:where all parameters shared with the MCRM have similar interpretations; is the fraction of the byproducts due to consumption of resource which are converted to resource and is the "leakage fraction" of resource governing how much of the resource is released into the environment as metabolic byproducts. [13] [8]
For the MacArthur consumer resource model (MCRM), MacArthur introduced an optimization principle to identify the uninvadable steady state of the model (i.e., the steady state so that if any species with zero population is re-introduced, it will fail to invade, meaning the ecosystem will return to said steady state). To derive the optimization principle, one assumes resource dynamics become sufficiently fast (i.e., ) that they become entrained to species dynamics and are constantly at steady state (i.e., ) so that is expressed as a function of . With this assumption, one can express species dynamics as,where denotes a sum over resource abundances which satisfy . The above expression can be written as , where,
At un-invadable steady state for all surviving species and for all extinct species . [14] [15]
MacArthur's Minimization Principle has been extended to the more general Minimum Environmental Perturbation Principle (MEPP) which maps certain niche CRM models to constrained optimization problems. When the population growth conferred upon a species by consuming a resource is related to the impact the species' consumption has on the resource's abundance through the equation,species-resource interactions are said to be symmetric. In the above equation and are arbitrary functions of resource abundances. When this symmetry condition is satisfied, it can be shown that there exists a function such that: [7] After determining this function , the steady-state uninvadable resource abundances and species populations are the solution to the constrained optimization problem:The species populations are the Lagrange multipliers for the constraints on the second line. This can be seen by looking at the KKT conditions, taking to be the Lagrange multipliers:Lines 1, 3, and 4 are the statements of feasibility and uninvadability: if , then must be zero otherwise the system would not be at steady state, and if , then must be non-positive otherwise species would be able to invade. Line 2 is the stationarity condition and the steady-state condition for the resources in nice CRMs. The function can be interpreted as a distance by defining the point in the state space of resource abundances at which it is zero, , to be its minimum. The Lagrangian for the dual problem which leads to the above KKT conditions is,In this picture, the unconstrained value of that minimizes (i.e., the steady-state resource abundances in the absence of any consumers) is known as the resource supply vector.
The steady states of consumer resource models can be analyzed using geometric means in the space of resource abundances. [16] [17] [8]
For a community to satisfy the uninvasibility and steady-state conditions, the steady-state resource abundances (denoted ) must satisfy,for all species . The inequality is saturated if and only if species survives. Each of these conditions specifies a region in the space of possible steady-state resource abundances, and the realized steady-state resource abundance is restricted to the intersection of these regions. The boundaries of these regions, specified by , are known as the zero net-growth isoclines (ZNGIs). If species survive, then the steady-state resource abundances must satisfy, . The structure and locations of the intersections of the ZNGIs thus determine what species and feasibly coexist; the realized steady-state community is dependent on the supply of resources and can be analyzed by examining coexistence cones.
The structure of ZNGI intersections determines what species can feasibly coexist but does not determine what set of coexisting species will be realized. Coexistence cones determine what species determine what species will survive in an ecosystem given a resource supply vector. A coexistence cone generated by a set of species is defined to be the set of possible resource supply vectors which will lead to a community containing precisely the species .
To see the cone structure, consider that in the MacArthur or Tilman models, the steady-state non-depleted resource abundances must satisfy,where is a vector containing the carrying capacities/supply rates, and is the th row of the consumption matrix , considered as a vector. As the surviving species are exactly those with positive abundances, the sum term becomes a sum only over surviving species, and the right-hand side resembles the expression for a convex cone with apex and whose generating vectors are the for the surviving species .
In an ecosystem with many species and resources, the behavior of consumer-resource models can be analyzed using tools from statistical physics, particularly mean-field theory and the cavity method. [18] [19] [20] In the large ecosystem limit, there is an explosion of the number of parameters. For example, in the MacArthur model, parameters are needed. In this limit, parameters may be considered to be drawn from some distribution which leads to a distribution of steady-state abundances. These distributions of steady-state abundances can then be determined by deriving mean-field equations for random variables representing the steady-state abundances of a randomly selected species and resource.
In the MCRM, the model parameters can be taken to be random variables with means and variances:
With this parameterization, in the thermodynamic limit (i.e., with ), the steady-state resource and species abundances are modeled as a random variable, , which satisfy the self-consistent mean-field equations, [18] where are all moments which are determined self-consistently, are independent standard normal random variables, and and are average susceptibilities which are also determined self-consistently.
This mean-field framework can determine the moments and exact form of the abundance distribution, the average susceptibilities, and the fraction of species and resources that survive at a steady state.
Similar mean-field analyses have been performed for the externally supplied resources model, [11] the Tilman model, [12] and the microbial consumer-resource model. [20] These techniques were first developed to analyze the random generalized Lotka–Volterra model.
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.
In statistical mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force, with that of the total potential energy of the system. Mathematically, the theorem states where T is the total kinetic energy of the N particles, Fk represents the force on the kth particle, which is located at position rk, and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from vis, the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870.
The Cauchy–Schwarz inequality is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely used inequalities in mathematics.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.
The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several components due to the presence of the magnetic field. Although initially coined for the static case, it is also used in the wider context to describe the effect of time-dependent electric fields. In particular, the Stark effect is responsible for the pressure broadening of spectral lines by charged particles in plasmas. For most spectral lines, the Stark effect is either linear or quadratic with a high accuracy.
In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of the total energy with respect to a parameter to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. According to the theorem, once the spatial distribution of the electrons has been determined by solving the Schrödinger equation, all the forces in the system can be calculated using classical electrostatics.
The diabatic representation as a mathematical tool for theoretical calculations of atomic collisions and of molecular interactions.
In mathematics, the Fubini–Study metric is a Kähler metric on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.
A bond graph is a graphical representation of a physical dynamic system. It allows the conversion of the system into a state-space representation. It is similar to a block diagram or signal-flow graph, with the major difference that the arcs in bond graphs represent bi-directional exchange of physical energy, while those in block diagrams and signal-flow graphs represent uni-directional flow of information. Bond graphs are multi-energy domain and domain neutral. This means a bond graph can incorporate multiple domains seamlessly.
In quantum field theory and statistical mechanics, the Hohenberg–Mermin–Wagner theorem or Mermin–Wagner theorem states that continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions d ≤ 2. Intuitively, this means that long-range fluctuations can be created with little energy cost, and since they increase the entropy, they are favored.
Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.
In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.
The purpose of this page is to provide supplementary materials for the ordinary least squares article, reducing the load of the main article with mathematics and improving its accessibility, while at the same time retaining the completeness of exposition.
Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.
A phonovoltaic (pV) cell converts vibrational (phonons) energy into a direct current much like the photovoltaic effect in a photovoltaic (PV) cell converts light (photon) into power. That is, it uses a p-n junction to separate the electrons and holes generated as valence electrons absorb optical phonons more energetic than the band gap, and then collects them in the metallic contacts for use in a circuit. The pV cell is an application of heat transfer physics and competes with other thermal energy harvesting devices like the thermoelectric generator.
Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.
The random generalized Lotka–Volterra model (rGLV) is an ecological model and random set of coupled ordinary differential equations where the parameters of the generalized Lotka–Volterra equation are sampled from a probability distribution, analogously to quenched disorder. The rGLV models dynamics of a community of species in which each species' abundance grows towards a carrying capacity but is depleted due to competition from the presence of other species. It is often analyzed in the many-species limit using tools from statistical physics, in particular from spin glass theory.