Species richness

Last updated
Global mammal richness (2015) Global Mammal Richness Grids, 2015 Release, All Mammals (28871815285).jpg
Global mammal richness (2015)
Global amphibian richness (2015) Global Amphibian Richness Grids, 2015 Release, All Amphibians (28794889801).jpg
Global amphibian richness (2015)

Species richness is the number of different species represented in an ecological community, landscape or region. [1] Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions. Species richness is sometimes considered synonymous with species diversity, but the formal metric species diversity takes into account both species richness and species evenness.

Contents

Sampling considerations

Depending on the purposes of quantifying species richness, the individuals can be selected in different ways. They can be, for example, trees found in an inventory plot, birds observed from a monitoring point, or beetles collected in a pitfall trap. Once the set of individuals has been defined, its species richness can be exactly quantified, provided the species-level taxonomy of the organisms of interest is well enough known. Applying different species delimitations will lead to different species richness values for the same set of individuals.

In practice, people are usually interested in the species richness of areas so large that not all individuals in them can be observed and identified to species. Then applying different sampling methods will lead to different sets of individuals being observed for the same area of interest, and the species richness of each set may be different. When a new individual is added to a set, it may introduce a species that was not yet represented in the set, and thereby increase the species richness of the set. For this reason, sets with many individuals can be expected to contain more species than sets with fewer individuals.

If species richness of the obtained sample is taken to represent species richness of the underlying habitat or other larger unit, values are only comparable if sampling efforts are standardised in an appropriate way. Resampling methods can be used to bring samples of different sizes to a common footing. [2] Properties of the sample, especially the number of species only represented by one or a few individuals, can be used to help estimating the species richness in the population from which the sample was drawn. [3] [4] [5]

The observed species richness is affected not only by the number of individuals but also by the heterogeneity of the sample. If individuals are drawn from different environmental conditions (or different habitats), the species richness of the resulting set can be expected to be higher than if all individuals are drawn from similar environments. The accumulation of new species with increasing sampling effort can be visualised with a species accumulation curve. Such curves can be constructed in different ways. [6] Increasing the area sampled increases observed species richness both because more individuals get included in the sample and because large areas are environmentally more heterogeneous than small areas.

Many organism groups have most species in the tropics, which leads to latitudinal gradients in species richness. There has been much discussion about the relationship between productivity and species richness. Results have varied among studies, such that no global consensus on either the pattern or its possible causes has emerged. [7]

Applications

Species richness is often used as a criterion when assessing the relative conservation values of habitats or landscapes. However, species richness is blind to the identity of the species. An area with many endemic or rare species is generally considered to have higher conservation value than another area where species richness is similar, but all the species are common and widespread.

See also

Related Research Articles

Species diversity is the number of different species that are represented in a given community. The effective number of species refers to the number of equally abundant species needed to obtain the same mean proportional species abundance as that observed in the dataset of interest. Meanings of species diversity may include species richness, taxonomic or phylogenetic diversity, and/or species evenness. Species richness is a simple count of species. Taxonomic or phylogenetic diversity is the genetic relationship between different groups of species. Species evenness quantifies how equal the abundances of the species are.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

Insular biogeography or island biogeography is a field within biogeography that examines the factors that affect the species richness and diversification of isolated natural communities. The theory was originally developed to explain the pattern of the species–area relationship occurring in oceanic islands. Under either name it is now used in reference to any ecosystem that is isolated due to being surrounded by unlike ecosystems, and has been extended to mountain peaks, seamounts, oases, fragmented forests, and even natural habitats isolated by human land development. The field was started in the 1960s by the ecologists Robert H. MacArthur and E. O. Wilson, who coined the term island biogeography in their inaugural contribution to Princeton's Monograph in Population Biology series, which attempted to predict the number of species that would exist on a newly created island.

In ecology, the species discovery curve is a graph recording the cumulative number of species of living things recorded in a particular environment as a function of the cumulative effort expended searching for them. It is related to, but not identical with, the species-area curve.

Spatial ecology studies the ultimate distributional or spatial unit occupied by a species. In a particular habitat shared by several species, each of the species is usually confined to its own microhabitat or spatial niche because two species in the same general territory cannot usually occupy the same ecological niche for any significant length of time.

<span class="mw-page-title-main">Species–area relationship</span> Relationship between the size of an area or habitat and the number of species it can support

The species–area relationship or species–area curve describes the relationship between the area of a habitat, or of part of a habitat, and the number of species found within that area. Larger areas tend to contain larger numbers of species, and empirically, the relative numbers seem to follow systematic mathematical relationships. The species–area relationship is usually constructed for a single type of organism, such as all vascular plants or all species of a specific trophic level within a particular site. It is rarely if ever, constructed for all types of organisms if simply because of the prodigious data requirements. It is related but not identical to the species discovery curve.

A diversity index is a quantitative measure that reflects how many different types there are in a dataset. More sophisticated indices accounting for the phylogenetic relatedness among the types. Diversity indices are statistical representations of different aspects of biodiversity, that are useful simplifications to compare different communities or sites.

In ecology, alpha diversity (α-diversity) is the mean species diversity in a site at a local scale. The term was introduced by R. H. Whittaker together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape is determined by two different things, the mean species diversity in sites at a more local scale and the differentiation among those sites.

<span class="mw-page-title-main">Latitudinal gradients in species diversity</span> Global increase in species richness from polar regions to tropics

Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. It has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.

<span class="mw-page-title-main">Species distribution</span> Geographical area in which a species can be found

Species distribution, or speciesdispersion, is the manner in which a biological taxon is spatially arranged. The geographic limits of a particular taxon's distribution is its range, often represented as shaded areas on a map. Patterns of distribution change depending on the scale at which they are viewed, from the arrangement of individuals within a small family unit, to patterns within a population, or the distribution of the entire species as a whole (range). Species distribution is not to be confused with dispersal, which is the movement of individuals away from their region of origin or from a population center of high density.

In ecology, beta diversity is the ratio between regional and local species diversity. The term was introduced by R. H. Whittaker together with the terms alpha diversity (α-diversity) and gamma diversity (γ-diversity). The idea was that the total species diversity in a landscape (γ) is determined by two different things: the mean species diversity at the local level (α) and the differentiation among local sites (β). Other formulations for beta diversity include "absolute species turnover", "Whittaker's species turnover" and "proportional species turnover".

In ecology, gamma diversity (γ-diversity) is the total species diversity in a landscape. The term was introduced by R. H. Whittaker together with the terms alpha diversity (α-diversity) and beta diversity (β-diversity). Whittaker's idea was that the total species diversity in a landscape (γ) is determined by two different things, the mean species diversity in sites at a more local scale (α) and the differentiation among those sites (β). According to this reasoning, alpha diversity and beta diversity constitute independent components of gamma diversity:

<span class="mw-page-title-main">Abundance (ecology)</span> Relative representation of a species in anr ecosystem

In ecology, local abundance is the relative representation of a species in a particular ecosystem. It is usually measured as the number of individuals found per sample. The ratio of abundance of one species to one or multiple other species living in an ecosystem is referred to as relative species abundances. Both indicators are relevant for computing biodiversity.

In ecology, the occupancy–abundance (O–A) relationship is the relationship between the abundance of species and the size of their ranges within a region. This relationship is perhaps one of the most well-documented relationships in macroecology, and applies both intra- and interspecifically. In most cases, the O–A relationship is a positive relationship. Although an O–A relationship would be expected, given that a species colonizing a region must pass through the origin and could reach some theoretical maximum abundance and distribution, the relationship described here is somewhat more substantial, in that observed changes in range are associated with greater-than-proportional changes in abundance. Although this relationship appears to be pervasive, and has important implications for the conservation of endangered species, the mechanism(s) underlying it remain poorly understood

<i>The Theory of Island Biogeography</i> 1967 book by Robert MacArthur and Edward O. Wilson

The Theory of Island Biogeography is a 1967 book by the ecologist Robert MacArthur and the biologist Edward O. Wilson. It is widely regarded as a seminal work in island biogeography and ecology. The Princeton University Press reprinted the book in 2001 as a part of the "Princeton Landmarks in Biology" series. The book popularized the theory that insular biota maintain a dynamic equilibrium between immigration and extinction rates. The book also popularized the concepts and terminology of r/K selection theory.

<span class="mw-page-title-main">Rarefaction (ecology)</span> Technique to assess species richness

In ecology, rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples. Rarefaction curves generally grow rapidly at first, as the most common species are found, but the curves plateau as only the rarest species remain to be sampled.

<span class="mw-page-title-main">Body size and species richness</span>

The body size-species richness distribution is a pattern observed in the way taxa are distributed over large spatial scales. The number of species that exhibit small body size generally far exceed the number of species that are large-bodied. Macroecology has long sought to understand the mechanisms that underlie the patterns of biodiversity, such as the body size-species richness pattern.

Relative species abundance is a component of biodiversity and is a measure of how common or rare a species is relative to other species in a defined location or community. Relative abundance is the percent composition of an organism of a particular kind relative to the total number of organisms in the area. Relative species abundances tend to conform to specific patterns that are among the best-known and most-studied patterns in macroecology. Different populations in a community exist in relative proportions; this idea is known as relative abundance.

<span class="mw-page-title-main">Elevational diversity gradient</span> Ecological pattern in which biodiversity changes with elevation

Elevational diversity gradient (EDG) is an ecological pattern where biodiversity changes with elevation. The EDG states that species richness tends to decrease as elevation increases, up to a certain point, creating a "diversity bulge" at middle elevations. There have been multiple hypotheses proposed for explaining the EDG, none of which accurately describe the phenomenon in full.

Dark diversity is the set of species that are absent from a study site but present in the surrounding region and potentially able to inhabit particular ecological conditions. It can be determined based on species distribution, dispersal potential and ecological needs. The term was introduced in 2011 by three researchers from the University of Tartu and was inspired by the idea of dark matter in physics since dark diversity too cannot be directly observed.

References

  1. Colwell, Robert K. (2009). "Biodiversity: Concepts, Patterns and Measurement". In Simon A. Levin (ed.). The Princeton Guide to Ecology . Princeton: Princeton University Press. pp.  257–263.
  2. Colwell, R. K. and Coddington, J. A. (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions: Biological Sciences, 345, 101–118.
  3. Chao, A. (1984) Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265–270.
  4. Chao, A. (2005) Species richness estimation. Pages 7909–7916 in N. Balakrishnan, C. B. Read, and B. Vidakovic, eds. Encyclopedia of Statistical Sciences. New York, Wiley.
  5. Webb, L. J.; Tracey, J. G.; Williams, W. T.; Lance, G. N. (1969), Studies in the Numerical Analysis of Complex Rain-Forest Communities: II. The Problem of Species-Sampling. Journal of Ecology, Vol. 55, No. 2, Jul., 1967, pp. 525-538, Journal of Ecology, British Ecological Society, JSTOR   2257891
  6. Scheiner, Samuel M. (October 17, 2003). "Six types of species-area curves". Global Ecology and Biogeography. Wiley. 12 (6): 441–447. Bibcode:2003GloEB..12..441S. doi:10.1046/j.1466-822x.2003.00061.x. ISSN   1466-822X.
  7. Waide, R. B. et al (1999) The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30, 257–300.

Further reading