Ecological threshold

Last updated

Ecological threshold is the point at which a relatively small change or disturbance in external conditions causes a rapid change in an ecosystem. When an ecological threshold has been passed, the ecosystem may no longer be able to return to its state by means of its inherent resilience. Crossing an ecological threshold often leads to rapid change of ecosystem health. Ecological threshold represent a non-linearity of the responses in ecological or biological systems to pressures caused by human activities or natural processes. [1] Critical load, regime shift, critical transition and tipping point are examples of other closely related terms.

Contents

Characteristics

Thresholds can be characterized as points or as zones. Zone-type thresholds imply a gradual shift or transition from one state to another rather than an abrupt change at a specific point. [2] Ecological thresholds have caught attention because many cases of catastrophic worsening of conditions have proved to be difficult or nearly impossible to remedy (also known as points of no return). Ecological extinction is an example of a definitive point of no return.

Ecological thresholds are often characterized by hysteresis, which means the dependence of the state of a system on the history of its state. Even when the change is not irreversible, the return path from altered to original state can be drastically different from the development leading to the altered state.

Another related concept is panarchy. Panarchy views coupled human-natural systems as a cross-scale set of adaptive cycles that reflect the dynamic nature of human and natural structures across time and space. Sudden shifts in ecosystem state can induce changes in human understanding of the way the systems need to be managed. These changes, in turn, may alter the institutions that carry out that management and as a result, some new changes occur in ecosystems.

Detection

There are many different types of thresholds and detecting the occurrence of a threshold is not always straightforward. One approach is to process time series which are thought to display a shift in order to identify a possible jump. Methods have been developed to enhance and localize the jumps. [3]

Examples

Some examples of ecological thresholds, such as clear lakes turning into turbid ones, are well documented but many more probably exist. The thresholds database [4] by Resilience Alliance and Santa Fe Institute includes over one hundred examples.

See also

Related Research Articles

<span class="mw-page-title-main">Landscape ecology</span> Science of relationships between ecological processes in the environment and particular ecosystems

Landscape ecology is the science of studying and improving relationships between ecological processes in the environment and particular ecosystems. This is done within a variety of landscape scales, development spatial patterns, and organizational levels of research and policy. Concisely, landscape ecology can be described as the science of "landscape diversity" as the synergetic result of biodiversity and geodiversity.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">C. S. Holling</span> Canadian ecologist (1930–2019)

Crawford Stanley "Buzz" Holling, was a Canadian ecologist, and Emeritus Eminent Scholar and Professor in Ecological Sciences at the University of Florida. Holling was one of the conceptual founders of ecological economics.

Regime shifts are large, abrupt, persistent changes in the structure and function of ecosystems, the climate, financial systems or other complex systems. A regime is a characteristic behaviour of a system which is maintained by mutually reinforced processes or feedbacks. Regimes are considered persistent relative to the time period over which the shift occurs. The change of regimes, or the shift, usually occurs when a smooth change in an internal process (feedback) or a single disturbance triggers a completely different system behavior. Although such non-linear changes have been widely studied in different disciplines ranging from atoms to climate dynamics, regime shifts have gained importance in ecology because they can substantially affect the flow of ecosystem services that societies rely upon, such as provision of food, clean water or climate regulation. Moreover, regime shift occurrence is expected to increase as human influence on the planet increases – the Anthropocene – including current trends on human induced climate change and biodiversity loss. When regime shifts are associated with a critical or bifurcation point, they may also be referred to as critical transitions.

Adaptive capacity relates to the capacity of systems, institutions, humans and other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to consequences. In the context of ecosystems, adaptive capacity is determined by genetic diversity of species, biodiversity of particular ecosystems in specific landscapes or biome regions. In the context of coupled socio-ecological social systems, adaptive capacity is commonly associated with the following characteristics: Firstly, the ability of institutions and networks to learn, and store knowledge and experience. Secondly, the creative flexibility in decision making, transitioning and problem solving. And thirdly, the existence of power structures that are responsive and consider the needs of all stakeholders.

Ecological extinction is "the reduction of a species to such low abundance that, although it is still present in the community, it no longer interacts significantly with other species".

<span class="mw-page-title-main">Ecological resilience</span> Capacity of ecosystems to resist and recover from change

In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point, these regime shifts may also be referred to as critical transitions.

<span class="mw-page-title-main">Anthropogenic biome</span>

Anthropogenic biomes, also known as anthromes, human biomes or intensive land-use biome, describe the terrestrial biosphere (biomes) in its contemporary, human-altered form using global ecosystem units defined by global patterns of sustained direct human interaction with ecosystems. Anthromes are generally composed of heterogeneous mosaics of different land uses and land covers, including significant areas of fallow or regenerating habitats.

<span class="mw-page-title-main">Potsdam Institute for Climate Impact Research</span> German research institute

The Potsdam Institute for Climate Impact Research is a German government-funded research institute addressing crucial scientific questions in the fields of global change, climate impacts, and sustainable development. Ranked among the top environmental think tanks worldwide, it is one of the leading research institutions and part of a global network of scientific and academic institutions working on questions of global environmental change. It is a member of the Leibniz Association, whose institutions perform research on subjects of high relevance to society.

Ecosystem-based management is an environmental management approach that recognizes the full array of interactions within an ecosystem, including humans, rather than considering single issues, species, or ecosystem services in isolation. It can be applied to studies in the terrestrial and aquatic environments with challenges being attributed to both. In the marine realm, they are highly challenging to quantify due to highly migratory species as well as rapidly changing environmental and anthropogenic factors that can alter the habitat rather quickly. To be able to manage fisheries efficiently and effectively it has become increasingly more pertinent to understand not only the biological aspects of the species being studied, but also the environmental variables they are experiencing. Population abundance and structure, life history traits, competition with other species, where the stock is in the local food web, tidal fluctuations, salinity patterns and anthropogenic influences are among the variables that must be taken into account to fully understand the implementation of a "ecosystem-based management" approach. Interest in ecosystem-based management in the marine realm has developed more recently, in response to increasing recognition of the declining state of fisheries and ocean ecosystems. However, due to a lack of a clear definition and the diversity involved with the environment, the implementation has been lagging. In freshwater lake ecosystems, it has been shown that ecosystem-based habitat management is more effective for enhancing fish populations than management alternatives.

<span class="mw-page-title-main">Wetland conservation</span> Conservation of wet areas

Wetland conservation is aimed at protecting and preserving areas of land including marshes, swamps, bogs, and fens that are covered by water seasonally or permanently due to a variety of threats from both natural and anthropogenic hazards. Some examples of these hazards include habitat loss, pollution, and invasive species. Wetland vary widely in their salinity levels, climate zones, and surrounding geography and play a crucial role in maintaining biodiversity, ecosystem services, and support human communities. Wetlands cover at least six percent of the Earth and have become a focal issue for conservation due to the ecosystem services they provide. More than three billion people, around half the world's population, obtain their basic water needs from inland freshwater wetlands. They provide essential habitats for fish and various wildlife species, playing a vital role in purifying polluted waters and mitigating the damaging effects of floods and storms. Furthermore, they offer a diverse range of recreational activities, including fishing, hunting, photography, and wildlife observation.

<span class="mw-page-title-main">Ecosystem management</span> Natural resource management

Ecosystem management is an approach to natural resource management that aims to ensure the long-term sustainability and persistence of an ecosystem's function and services while meeting socioeconomic, political, and cultural needs. Although indigenous communities have employed sustainable ecosystem management approaches implicitly for millennia, ecosystem management emerged explicitly as a formal concept in the 1990s from a growing appreciation of the complexity of ecosystems and of humans' reliance and influence on natural systems.

In ecology, the theory of alternative stable states predicts that ecosystems can exist under multiple "states". These alternative states are non-transitory and therefore considered stable over ecologically-relevant timescales. Ecosystems may transition from one stable state to another, in what is known as a state shift, when perturbed. Due to ecological feedbacks, ecosystems display resistance to state shifts and therefore tend to remain in one state unless perturbations are large enough. Multiple states may persist under equal environmental conditions, a phenomenon known as hysteresis. Alternative stable state theory suggests that discrete states are separated by ecological thresholds, in contrast to ecosystems which change smoothly and continuously along an environmental gradient.

<span class="mw-page-title-main">Planetary boundaries</span> Limits not to be exceeded if humanity wants to survive in a safe ecosystem

Planetary boundaries are a framework to describe limits to the impacts of human activities on the Earth system. Beyond these limits, the environment may not be able to self-regulate anymore. This would mean the Earth system would leave the period of stability of the Holocene, in which human society developed. The framework is based on scientific evidence that human actions, especially those of industrialized societies since the Industrial Revolution, have become the main driver of global environmental change. According to the framework, "transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental-scale to planetary-scale systems."

A social-ecological system consists of 'a bio-geo-physical' unit and its associated social actors and institutions. Social-ecological systems are complex and adaptive and delimited by spatial or functional boundaries surrounding particular ecosystems and their context problems.

<span class="mw-page-title-main">Ecosystem health</span>

Ecosystem health is a metaphor used to describe the condition of an ecosystem. Ecosystem condition can vary as a result of fire, flooding, drought, extinctions, invasive species, climate change, mining, fishing, farming or logging, chemical spills, and a host of other reasons. There is no universally accepted benchmark for a healthy ecosystem, rather the apparent health status of an ecosystem can vary depending upon which health metrics are employed in judging it and which societal aspirations are driving the assessment. Advocates of the health metaphor argue for its simplicity as a communication tool. "Policy-makers and the public need simple, understandable concepts like health." Some critics worry that ecosystem health, a "value-laden construct", can be "passed off as science to unsuspecting policy makers and the public." However, this term is often used in portraying the state of ecosystems worldwide and in conservation and management. For example, scientific journals and the UN often use the terms planetary and ecosystem health, such as the recent journal The Lancet Planetary Health.

<span class="mw-page-title-main">Ecosystem collapse</span> Ecological communities abruptly losing biodiversity, often irreversibly

An ecosystem, short for ecological system, is defined as a collection of interacting organisms within a biophysical environment. Ecosystems are never static, and are continually subject to stabilizing and destabilizing processes alike. Stabilizing processes allow ecosystems to adequately respond to destabilizing changes, or pertubations, in ecological conditions, or to recover from degradation induced by them: yet, if destabilizing processes become strong enough or fast enough to cross a critical threshold within that ecosystem, often described as an ecological 'tipping point', then an ecosystem collapse. occurs.

Critical transitions are abrupt shifts in the state of ecosystems, the climate, financial systems or other complex dynamical systems that may occur when changing conditions pass a critical or bifurcation point. As such, they are a particular type of regime shift. Recovery from such shifts may require more than a simple return to the conditions at which a transition occurred, a phenomenon called hysteresis. In addition to natural systems, critical transitions are also studied in psychology, medicine, economics, sociology, military, and several other disciplines.

<span class="mw-page-title-main">Marine coastal ecosystem</span> Wildland-ocean interface

A marine coastal ecosystem is a marine ecosystem which occurs where the land meets the ocean. Marine coastal ecosystems include many very different types of marine habitats, each with their own characteristics and species composition. They are characterized by high levels of biodiversity and productivity.

<span class="mw-page-title-main">Resilience (mathematics)</span> Mathematical measure of transient behavior.

In mathematical modeling, resilience refers to the ability of a dynamical system to recover from perturbations and return to its original stable steady state. It is a measure of the stability and robustness of a system in the face of changes or disturbances. If a system is not resilient enough, it is more susceptible to perturbations and can more easily undergo a critical transition. A common analogy used to explain the concept of resilience of an equilibrium is one of a ball in a valley. A resilient steady state corresponds to a ball in a deep valley, so any push or perturbation will very quickly lead the ball to return to the resting point where it started. On the other hand, a less resilient steady state corresponds to a ball in a shallow valley, so the ball will take a much longer time to return to the equilibrium after a perturbation.

References

  1. Groffman, Peter M.; Baron, Jill S.; Blett, Tamara; Gold, Arthur J.; Goodman, Iris; Gunderson, Lance H.; Levinson, Barbara M.; Palmer, Margaret A.; Paerl, Hans W.; Peterson, Garry D.; Poff, N. LeRoy; Rejeski, David W.; Reynolds, James F.; Turner, Monica G.; Weathers, Kathleen C.; Wiens, John (2006-01-30). "Ecological Thresholds: The Key to Successful Environmental Management or an Important Concept with No Practical Application?" (PDF). Ecosystems. 9 (1). Springer Nature: 1–13. doi:10.1007/s10021-003-0142-z. ISSN   1432-9840. S2CID   11506432.
  2. Huggett, Andrew J. (2005). "The concept and utility of 'ecological thresholds' in biodiversity conservation". Biological Conservation. 124 (3). Elsevier BV: 301–310. doi:10.1016/j.biocon.2005.01.037. ISSN   0006-3207.
  3. Thresholds enhancer Archived 2011-07-20 at the Wayback Machine
  4. "Thresholds database". Resilience Alliance. Retrieved 2022-05-09.