Non-trophic networks

Last updated

Any action or influence that species have on each other is considered a biological interaction. These interactions between species can be considered in several ways. One such way is to depict interactions in the form of a network, which identifies the members and the patterns that connect them. Species interactions are considered primarily in terms of trophic interactions, which depict which species feed on others.

In biology, a species ( ) is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined. While these definitions may seem adequate, when looked at more closely they represent problematic species concepts. For example, the boundaries between closely related species become unclear with hybridisation, in a species complex of hundreds of similar microspecies, and in a ring species. Also, among organisms that reproduce only asexually, the concept of a reproductive species breaks down, and each clone is potentially a microspecies.

A food chain is a linear network of links in a food web starting from producer organisms and ending at apex predator species, detritivores, or decomposer species. A food chain also shows how the organisms are related with each other by the food they eat. Each level of a food chain represents a different trophic level. A food chain differs from a food web, because the complex network of different animals' feeding relations are aggregated and the chain only follows a direct, linear pathway of one animal at a time. Natural interconnections between food chains make it a food web. A common metric used to the quantify food web trophic structure is food chain length. In its simplest form, the length of a chain is the number of links between a trophic consumer and the base of the web and the mean chain length of an entire web is the arithmetic average of the lengths of all chains in a food web.

Contents

Currently, ecological networks that integrate non-trophic interactions are being built. The type of interactions they can contain can be classified into six categories: mutualism, commensalism, neutralism, amensalism, antagonism, and competition.

An ecological network is a representation of the biotic interactions in an ecosystem, in which species (nodes) are connected by pairwise interactions (links). These interactions can be trophic or symbiotic. Ecological networks are used to describe and compare the structures of real ecosystems, while network models are used to investigate the effects of network structure on properties such as ecosystem stability.

Mutualism (biology) A relationship between organisms of different species in which each individual benefits from the activity of the other

Mutualism describes the ecological interaction between two or more species where each species benefits. Mutualism is thought to be the most common type of ecological interaction, and it is often dominant in most communities worldwide. Prominent examples include most vascular plants engaged in mutualistic interactions with mycorrhizae, flowering plants being pollinated by animals, vascular plants being dispersed by animals, and corals with zooxanthellae, among many others. Mutualism can be contrasted with interspecific competition, in which each species experiences reduced fitness, and exploitation, or parasitism, in which one species benefits at the "expense" of the other.

Commensalism is a long-term biological interaction (symbiosis) in which members of one species gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with mutualism, in which both organisms benefit from each other, amensalism, where one is harmed while the other is unaffected, and parasitism, where one benefits while the other is harmed. The commensal may obtain nutrients, shelter, support, or locomotion from the host species, which is substantially unaffected. The commensal relation is often between a larger host and a smaller commensal; the host organism is unmodified, whereas the commensal species may show great structural adaptation consonant with its habits, as in the remoras that ride attached to sharks and other fishes. Remoras feed on their hosts' fecal matter, while pilot fish feed on the leftovers of their hosts' meals. Numerous birds perch on bodies of large mammal herbivores or feed on the insects turned up by grazing mammals.

Observing and estimating the fitness costs and benefits of species interactions can be very problematic. The way interactions are interpreted can profoundly affect the ensuing conclusions.

Fitness (biology) The average contribution to the gene pool of the next generation made by individuals of the specified genotype or phenotype

Fitness is the quantitative representation of natural and sexual selection within evolutionary biology. It can be defined either with respect to a genotype or to a phenotype in a given environment. In either case, it describes individual reproductive success and is equal to the average contribution to the gene pool of the next generation that is made by individuals of the specified genotype or phenotype. The fitness of a genotype is manifested through its phenotype, which is also affected by the developmental environment. The fitness of a given phenotype can also be different in different selective environments.

Interaction characteristics

Characterization of interactions can be made according to various measures, or any combination of them.

Prevalence identifies the proportion of the population affected by a given interaction, and thus quantifies whether it is relatively rare or common. Generally, only common interactions are considered.

Whether the interaction is beneficial or harmful to the species involved determines the sign of the interaction, and what type of interaction it is classified as. To establish whether they are harmful or beneficial, careful observational and/or experimental studies can be conducted, in an attempt to establish the cost/benefit balance experienced by the members.

The sign of an interaction does not capture the impact on fitness of that interaction. One example of this is of antagonism, in which predators may have a much stronger impact on their prey species (death), than parasites (reduction in fitness). Similarly, positive interactions can produce anything from a negligible change in fitness to a life or death impact.

Predation A biological interaction where a predator kills and eats a prey organism

Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation and parasitoidism. It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as a seed predator is both a predator and a herbivore.

The relationship in space and time is not currently considered within a network structure, though it has been observed by naturalists for centuries. It would be highly informative to include geographical proximity, duration, and seasonal patterns of interactions into network analysis.

Natural history study of organisms including plants or animals in their environment

Natural history is a domain of inquiry involving organisms including animals, fungi and plants in their environment; leaning more towards observational than experimental methods of study. A person who studies natural history is called a naturalist or natural historian.

Importance of interactions

In the same way that a trophic cascade can occur, it is expected that 'interaction cascades' take place. Thus, it should be possible to construct 'effect' networks which parallel in many ways the energy or matter networks common in the literature. By assessing the network topology and constructing models, we might better understand how interacting species affect each other and how these effects spread through the network. In certain instances, it has been shown that indirect trophic effects tend to dominate direct ones (Patten, 1995)—perhaps this pattern will also emerge in non-trophic interactions.

Trophic cascades are powerful indirect interactions that can control entire ecosystems, occurring when a trophic level in a food web is suppressed. For example, a top-down cascade will occur if predators are effective enough in predation to reduce the abundance, or alter the behavior, of their prey, thereby releasing the next lower trophic level from predation.

Keystone species

By analyzing network structures, one can determine keystone species that are of particular importance. A different class of keystone species is what are termed 'ecosystem engineers'. Certain organisms alter the environment so drastically that it affects many interactions that take place within a habitat. This term is used for organisms that "directly or indirectly modulate availability of resources (other than themselves) to other species, by causing physical state changes in biotic or abiotic materials". Beavers are an example of such engineers. Other examples include earthworms, trees, coral reefs, and planktonic organisms. Such 'network engineers' can be seen as "interaction modifiers", meaning that a change in their population density affects the interactions between two or more other species.

Interesting examples

Certain interactions may be particularly problematic to understand. These may include

Criticisms

Related Research Articles

Ecology Scientific study of the relationships between living organisms and their environment

Ecology is the branch of biology which studies the interactions among organisms and their environment. Objects of study include interactions of organisms that include biotic and abiotic components of their environment. Topics of interest include the biodiversity, distribution, biomass, and populations of organisms, as well as cooperation and competition within and between species. Ecosystems are dynamically interacting systems of organisms, the communities they make up, and the non-living components of their environment. Ecosystem processes, such as primary production, pedogenesis, nutrient cycling, and niche construction, regulate the flux of energy and matter through an environment. These processes are sustained by organisms with specific life history traits. Biodiversity means the varieties of species, genes, and ecosystems, enhances certain ecosystem services.

Theoretical ecology

Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.

Food web A natural interconnection of food chains

A food web is a natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community. Another name for food web is consumer-resource system. Ecologists can broadly lump all life forms into one of two categories called trophic levels: 1) the autotrophs, and 2) the heterotrophs. To maintain their bodies, grow, develop, and to reproduce, autotrophs produce organic matter from inorganic substances, including both minerals and gases such as carbon dioxide. These chemical reactions require energy, which mainly comes from the Sun and largely by photosynthesis, although a very small amount comes from hydrothermal vents and hot springs. A gradient exists between trophic levels running from complete autotrophs that obtain their sole source of carbon from the atmosphere, to mixotrophs that are autotrophic organisms that partially obtain organic matter from sources other than the atmosphere, and complete heterotrophs that must feed to obtain organic matter. The linkages in a food web illustrate the feeding pathways, such as where heterotrophs obtain organic matter by feeding on autotrophs and other heterotrophs. The food web is a simplified illustration of the various methods of feeding that links an ecosystem into a unified system of exchange. There are different kinds of feeding relations that can be roughly divided into herbivory, carnivory, scavenging and parasitism. Some of the organic matter eaten by heterotrophs, such as sugars, provides energy. Autotrophs and heterotrophs come in all sizes, from microscopic to many tonnes - from cyanobacteria to giant redwoods, and from viruses and bdellovibrio to blue whales.

Keystone species species that has a disproportionately large effect on its environment relative to its abundance

A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance. Such species are described as playing a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. A keystone species is a plant or animal that plays a unique and crucial role in the way an ecosystem functions. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf, are also apex predators.

This glossary of ecology is a list of definitions of terms and topics in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology and Glossary of environmental science.

Ecosystem engineer

An ecosystem engineer is any organism that creates, significantly modifies, maintains or destroys a habitat. These organisms can have a large impact on the species richness and landscape-level heterogeneity of an area. As a result, ecosystem engineers are important for maintaining the health and stability of the environment they are living in. Since all organisms impact the environment they live in in one way or another, it has been proposed that the term "ecosystem engineers" be used only for keystone species whose behavior very strongly affects other organisms.

Kelp forest

Kelp forests are underwater areas with a high density of kelp. They are recognized as one of the most productive and dynamic ecosystems on Earth. Smaller areas of anchored kelp are called kelp beds.

Soil food web

The soil food web is the community of organisms living all or part of their lives in the soil. It describes a complex living system in the soil and how it interacts with the environment, plants, and animals.

Functional ecology

Functional ecology is a branch of ecology that focuses on the roles, or functions, that species play in the community or ecosystem in which they occur. In this approach, physiological, anatomical, and life history characteristics of the species are emphasized. The term "function" is used to emphasize certain physiological processes rather than discrete properties, describe an organism's role in a trophic system, or illustrate the effects of natural selective processes on an organism. This sub-discipline of ecology represents the crossroads between ecological patterns and the processes and mechanisms that underlie them. It focuses on traits represented in large number of species and can be measured in two ways. The first being screening, which involves measuring a trait across a number of species, and the second being empiricism, which provides quantitative relationships for the traits measured in screening. Functional ecology often emphasizes an integrative approach, using organism traits and activities to understand community dynamics and ecosystem processes, particularly in response to the rapid global changes occurring in earth’s environment.

Biogeomorphology Study of interactions between organisms and the development of landforms

Biogeomorphology and ecogeomorphology are the study of interactions between organisms and the development of landforms, and are thus fields of study within geomorphology and ichnology. Organisms affect geomorphic processes in a variety of ways. For example, trees can reduce landslide potential where their roots penetrate to underlying rock, plants and their litter inhibit soil erosion, biochemicals produced by plants accelerate the chemical weathering of bedrock and regolith, and marine animals cause the bioerosion of coral. The study of the interactions between marine biota and coastal landform processes is called coastal biogeomorphology.

Ecological facilitation or probiosis describes species interactions that benefit at least one of the participants and cause harm to neither. Facilitations can be categorized as mutualisms, in which both species benefit, or commensalisms, in which one species benefits and the other is unaffected. Much of classic ecological theory has focused on negative interactions such as predation and competition, but positive interactions (facilitation) are receiving increasing focus in ecological research. This article addresses both the mechanisms of facilitation and the increasing information available concerning the impacts of facilitation on community ecology.

The following outline is provided as an overview of and topical guide to ecology:

Cross-boundary subsidy

Cross-boundary subsidies are caused by organisms or materials that cross or traverse habitat patch boundaries, subsidizing the resident populations. The transferred organisms and materials may provide additional predators, prey, or nutrients to resident species, which can affect community and food web structure. Cross-boundary subsidies of materials and organisms occur in landscapes composed of different habitat patch types, and so depend on characteristics of those patches and on the boundaries in between them. Human alteration of the landscape, primarily through fragmentation, has the potential to alter important cross-boundary subsidies to increasingly isolated habitat patches. Understanding how processes that occur outside of habitat patches can affect populations within them may be important to habitat management.

Ecological extinction is "the reduction of a species to such low abundance that, although it is still present in the community, it no longer interacts significantly with other species".

Epibiont organism that lives on the surface of another living organism

An epibiont is an organism that lives on the surface of another living organism. An epibiont is, by definition, harmless to its host and in this sense, the interaction between the two organisms can be considered neutralistic or commensalistic.

Intraguild predation

Intraguild predation, or IGP, is the killing and sometimes eating of potential competitors. This interaction represents a combination of predation and competition, because both species rely on the same prey resources and also benefit from preying upon one another. Intraguild predation is common in nature and can be asymmetrical, in which one species feeds upon the other, or symmetrical, in which both species prey upon each other. Because the dominant intraguild predator gains the dual benefits of feeding and eliminating a potential competitor, IGP interactions can have considerable effects on the structure of ecological communities.

A habitat cascade is a common type of a facilitation cascade. where “indirect positive effects on focal organisms are mediated by successive formation or modification of biogenic habitat”.

Epistasis Phenomenon where the effect of one gene (locus) is dependent on the presence of one or more modifier genes, i.e. the genetic background

Epistasis is the phenomenon where the effect of one gene (locus) is dependent on the presence of one or more 'modifier genes', i.e. the genetic background. Originally the term meant that the phenotypic effect of one gene is masked by a different gene (locus). Thus, epistatic mutations have different effects in combination than individually. It was originally a concept from genetics but is now used in biochemistry, computational biology and evolutionary biology. It arises due to interactions, either between genes, or within them, leading to non-linear effects. Epistasis has a large influence on the shape of evolutionary landscapes, which leads to profound consequences for evolution and evolvability of phenotypic traits.

References