Energy Systems Language

Last updated
The Energy Systems Language of Systems Ecology Energese.jpg
The Energy Systems Language of Systems Ecology

The Energy Systems Language, also referred to as Energese, Energy Circuit Language, or Generic Systems Symbols, is a modelling language used for composing energy flow diagrams in the field of systems ecology. It was developed by Howard T. Odum and colleagues in the 1950s during studies of the tropical forests funded by the United States Atomic Energy Commission.

Contents

Design intent

The design intent of the energy systems language was to facilitate the generic depiction of energy flows through any scale system while encompassing the laws of physics, and in particular, the laws of thermodynamics (see energy transformation for an example).

In particular H.T. Odum aimed to produce a language which could facilitate the intellectual analysis, engineering synthesis and management of global systems such as the geobiosphere, and its many subsystems. Within this aim, H.T. Odum had a strong concern that many abstract mathematical models of such systems were not thermodynamically valid. Hence he used analog computers to make system models due to their intrinsic value; that is, the electronic circuits are of value for modelling natural systems which are assumed to obey the laws of energy flow, because, in themselves the circuits, like natural systems, also obey the known laws of energy flow, where the energy form is electrical. However Odum was interested not only in the electronic circuits themselves, but also in how they might be used as formal analogies for modeling other systems which also had energy flowing through them. As a result, Odum did not restrict his inquiry to the analysis and synthesis of any one system in isolation. The discipline that is most often associated with this kind of approach, together with the use of the energy systems language is known as systems ecology.

General characteristics

Passive electrical equivalent of Energy Systems Language storage icon PassiveAnalog.jpg
Passive electrical equivalent of Energy Systems Language storage icon

When applying the electronic circuits (and schematics) to modeling ecological and economic systems, Odum believed that generic categories, or characteristic modules, could be derived. Moreover he felt that a general symbolic system, fully defined in electronic terms (including the mathematics thereof) would be useful for depicting real system characteristics, such as the general categories of production, storage, flow, transformation, and consumption. Central principles of electronics also therefore became central features of the energy systems language – Odum's generic symbolism.

Depicted to the left is what the generic symbol for storage, which Odum named the Bertalanffy module, in honor of the general systems theorist Ludwig von Bertalanffy.

For Odum, in order to achieve a holistic understanding of how many apparently different systems actually affect each other, it was important to have a generic language with a massively scalable modeling capacity – to model global-to-local, ecological, physical and economic systems. The intention was, and for those who still apply it, is, to make biological, physical, ecological, economic and other system models thermodynamically, and so also energetically, valid and verifiable. As a consequence the designers of the language also aimed to include the energy metabolism of any system within the scope of inquiry.

Pictographic icons

In order to aid learning, in Modeling for all Scales Odum and Odum (2000) suggested systems might first be introduced with pictographic icons, and then later defined in the generic symbolism. Pictograms have therefore been used in software programs like ExtendSim to depict the basic categories of the Energy Systems Language. Some have argued that such an approach shares similar motivations to Otto Neurath's isotype project, Leibniz's (Characteristica Universalis) Enlightenment Project and Buckminster Fuller's works.

See also

Related Research Articles

Systems theory is the interdisciplinary study of systems, i.e. cohesive groups of interrelated, interdependent components that can be natural or human-made. Every system has causal boundaries, is influenced by its context, defined by its structure, function and role, and expressed through its relations with other systems. A system is "more than the sum of its parts" by expressing synergy or emergent behavior.

Karl Ludwig von Bertalanffy was an Austrian biologist known as one of the founders of general systems theory (GST). This is an interdisciplinary practice that describes systems with interacting components, applicable to biology, cybernetics and other fields. Bertalanffy proposed that the classical laws of thermodynamics might be applied to closed systems, but not necessarily to "open systems" such as living things. His mathematical model of an organism's growth over time, published in 1934, is still in use today.

<span class="mw-page-title-main">Food web</span> Natural interconnection of food chains

A food web is the natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community. Another name for food web is consumer-resource system. Ecologists can broadly lump all life forms into one of two categories called trophic levels: 1) the autotrophs, and 2) the heterotrophs. To maintain their bodies, grow, develop, and to reproduce, autotrophs produce organic matter from inorganic substances, including both minerals and gases such as carbon dioxide. These chemical reactions require energy, which mainly comes from the Sun and largely by photosynthesis, although a very small amount comes from bioelectrogenesis in wetlands, and mineral electron donors in hydrothermal vents and hot springs. These trophic levels are not binary, but form a gradient that includes complete autotrophs, which obtain their sole source of carbon from the atmosphere, mixotrophs, which are autotrophic organisms that partially obtain organic matter from sources other than the atmosphere, and complete heterotrophs that must feed to obtain organic matter.

Howard Thomas Odum, usually cited as H. T. Odum, was an American ecologist. He is known for his pioneering work on ecosystem ecology, and for his provocative proposals for additional laws of thermodynamics, informed by his work on general systems theory.

A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

<span class="mw-page-title-main">Ecological engineering</span> Environmental engineering

Ecological engineering uses ecology and engineering to predict, design, construct or restore, and manage ecosystems that integrate "human society with its natural environment for the benefit of both".

<span class="mw-page-title-main">Ecosystem ecology</span> Study of living and non-living components of ecosystems and their interactions

Ecosystem ecology is the integrated study of living (biotic) and non-living (abiotic) components of ecosystems and their interactions within an ecosystem framework. This science examines how ecosystems work and relates this to their components such as chemicals, bedrock, soil, plants, and animals.

Emergy is the amount of energy consumed in direct and indirect transformations to make a product or service. Emergy is a measure of quality differences between different forms of energy. Emergy is an expression of all the energy used in the work processes that generate a product or service in units of one type of energy. Emergy is measured in units of emjoules, a unit referring to the available energy consumed in transformations. Emergy accounts for different forms of energy and resources Each form is generated by transformation processes in nature and each has a different ability to support work in natural and in human systems. The recognition of these quality differences is a key concept.

"Unified Science" can refer to any of three related strands in contemporary thought.

The Latin term characteristica universalis, commonly interpreted as universal characteristic, or universal character in English, is a universal and formal language imagined by Gottfried Leibniz able to express mathematical, scientific, and metaphysical concepts. Leibniz thus hoped to create a language usable within the framework of a universal logical calculation or calculus ratiocinator.

<span class="mw-page-title-main">Systems ecology</span> Holistic approach to the study of ecological systems

Systems ecology is an interdisciplinary field of ecology, a subset of Earth system science, that takes a holistic approach to the study of ecological systems, especially ecosystems. Systems ecology can be seen as an application of general systems theory to ecology. Central to the systems ecology approach is the idea that an ecosystem is a complex system exhibiting emergent properties. Systems ecology focuses on interactions and transactions within and between biological and ecological systems, and is especially concerned with the way the functioning of ecosystems can be influenced by human interventions. It uses and extends concepts from thermodynamics and develops other macroscopic descriptions of complex systems.

In 1996 H.T. Odum defined transformity as,

"the emergy of one type required to make a unit of energy of another type. For example, since 3 coal emjoules (cej) of coal and 1 cej of services are required to generate 1 J of electricity, the coal transformity of electricity is 4 cej/J"

<span class="mw-page-title-main">Energy quality</span>

Energy quality is a measure of the ease with which a form of energy can be converted to useful work or to another form of energy: i.e. its content of thermodynamic free energy. A high quality form of energy has a high content of thermodynamic free energy, and therefore a high proportion of it can be converted to work; whereas with low quality forms of energy, only a small proportion can be converted to work, and the remainder is dissipated as heat. The concept of energy quality is also used in ecology, where it is used to track the flow of energy between different trophic levels in a food chain and in thermoeconomics, where it is used as a measure of economic output per unit of energy. Methods of evaluating energy quality often involve developing a ranking of energy qualities in hierarchical order.

<span class="mw-page-title-main">Environmental humanities</span> Study of environmental issues, nature and culture

The environmental humanities is an interdisciplinary area of research, drawing on the many environmental sub-disciplines that have emerged in the humanities over the past several decades, in particular environmental literature, environmental philosophy, environmental history, science and technology studies, environmental anthropology, and environmental communication. Environmental humanities employs humanistic questions about meaning, culture, values, ethics, and responsibilities to address pressing environmental problems. The environmental humanities aim to help bridge traditional divides between the sciences and the humanities, as well as between Western, Eastern, and Indigenous ways of relating to the natural world and the place of humans within it. The field also resists the traditional divide between "nature" and "culture," showing how many "environmental" issues have always been entangled in human questions of justice, labor, and politics. Environmental humanities is also a way of synthesizing methods from different fields to create new ways of thinking through environmental problems.

<span class="mw-page-title-main">Maximum power principle</span>

The maximum power principle or Lotka's principle has been proposed as the fourth principle of energetics in open system thermodynamics, where an example of an open system is a biological cell. According to Howard T. Odum, "The maximum power principle can be stated: During self-organization, system designs develop and prevail that maximize power intake, energy transformation, and those uses that reinforce production and efficiency."

<span class="mw-page-title-main">Analogical models</span> Relation of types of systems with corresponding dynamics

Analogical models are a method of representing a phenomenon of the world, often called the "target system" by another, more understandable or analysable system. They are also called dynamical analogies.

<span class="mw-page-title-main">Thermoeconomics</span> Heterodox economic theory

Thermoeconomics, also referred to as biophysical economics, is a school of heterodox economics that applies the laws of statistical mechanics to economic theory. Thermoeconomics can be thought of as the statistical physics of economic value and is a subfield of econophysics.

Charles A. S. Hall is an American systems ecologist and ESF Foundation Distinguished Professor at State University of New York in the College of Environmental Science & Forestry.

Industrial metabolism is a concept to describe the material and energy turnover of industrial systems. It was proposed by Robert Ayres in analogy to the biological metabolism as "the whole integrated collection of physical processes that convert raw materials and energy, plus labour, into finished products and wastes..." In analogy to the biological concept of metabolism, which is used to describe the whole of chemical reactions in, for example, a cell to maintain its functions and reproduce itself, the concept of industrial metabolism describes the chemical reactions, transport processes, and manufacturing activities in industry.

Urban metabolism is a model to facilitate the description and analysis of the flows of the materials and energy within cities, such as undertaken in a material flow analysis of a city. It provides researchers with a metaphorical framework to study the interactions of natural and human systems in specific regions. From the beginning, researchers have tweaked and altered the parameters of the urban metabolism model. C. Kennedy and fellow researchers have produced a clear definition in the 2007 paper The Changing Metabolism of Cities claiming that urban metabolism is "the sum total of the technical and socio-economic process that occur in cities, resulting in growth, production of energy and elimination of waste." With the growing concern of climate change and atmospheric degradation, the use of the urban metabolism model has become a key element in determining and maintaining levels of sustainability and health in cities around the world. Urban metabolism provides a unified or holistic viewpoint to encompass all of the activities of a city in a single model.

References