It has been suggested that this article be split into articles titled Coexistence theory and Cultural coexistence theory . (discuss) (October 2021) |
Coexistence theory is a framework to understand how competitor traits can maintain species diversity and stave-off competitive exclusion even among similar species living in ecologically similar environments. Coexistence theory explains the stable coexistence of species as an interaction between two opposing forces: fitness differences between species, which should drive the best-adapted species to exclude others within a particular ecological niche, and stabilizing mechanisms, which maintains diversity via niche differentiation. For many species to be stabilized in a community, population growth must be negative density-dependent, i.e. all participating species have a tendency to increase in density as their populations decline. In such communities, any species that becomes rare will experience positive growth, pushing its population to recover and making local extinction unlikely. As the population of one species declines, individuals of that species tend to compete predominantly with individuals of other species. Thus, the tendency of a population to recover as it declines in density reflects reduced intraspecific competition (within-species) relative to interspecific competition (between-species), the signature of niche differentiation (see Lotka-Volterra competition).
Two qualitatively different processes can help species to coexist: a reduction in average fitness differences between species or an increase in niche differentiation between species. These two factors have been termed equalizing and stabilizing mechanisms, respectively. [1] For species to coexist, any fitness differences that are not reduced by equalizing mechanisms must be overcome by stabilizing mechanisms.
Equalizing mechanisms reduce fitness differences between species. As its name implies, these processes act in a way that push the competitive abilities of multiple species closer together. Equalizing mechanisms affect interspecific competition (the competition between individuals of different species).
For example, when multiple species compete for the same resource, competitive ability is determined by the minimum level of resources a species needs to maintain itself (known as an R*, or equilibrium resource density). [2] Thus, the species with the lowest R* is the best competitor and excludes all other species in the absence of any niche differentiation. Any factor that reduces R*s between species (like increased harvest of the dominant competitor) is classified as an equalizing mechanism.
Environmental variation (which is the focus of the Intermediate Disturbance Hypothesis) can be considered an equalizing mechanism. Since the fitness of a given species is intrinsically tied to a specific environment, when that environment is disturbed (e.g. through storms, fires, volcanic eruptions, etc.) some species may lose components of their competitive advantage which were useful in the previous version of the environment.
Stabilizing mechanisms promote coexistence by concentrating intraspecific competition relative to interspecific competition. In other words, these mechanisms "encourage" an individual to compete more with other individuals of its own species, rather than with individuals of other species. Resource partitioning (a type of niche differentiation) is a stabilizing mechanism because interspecific competition is reduced when different species primarily compete for different resources. Similarly, if species are differently affected by environmental variation (e.g., soil type, rainfall timing, etc.), this can create a stabilizing mechanism (see the storage effect). Stabilizing mechanisms increase the low-density growth rate of all species.[ citation needed ]
In 1994, Chesson proposed that all stabilizing mechanisms could be categorized into four categories. [3] [4] These mechanisms are not mutually exclusive, and it is possible for all four to operate in any environment at a given time.
A general way of measuring the effect of stabilizing mechanisms is by calculating the growth rate of species i in a community as [7]
where:
This section may be too technical for most readers to understand.(June 2017) |
In 2008 Chesson and Kuang showed how to calculate fitness differences and stabilizing mechanisms when species compete for shared resources and competitors. Each species j captures resource type l at a species-specific rate, cjl. Each unit of resource captured contributes to species growth by value vl. Each consumer requires resources for the metabolic maintenance at rate μi. [8]
In conjunction, consumer growth is decreased by attack from predators. Each predator species m attacks species j at rate ajm.
Given predation and resource capture, the density of species i, Ni, grows at rate
where l sums over resource types and m sums over all predator species. Each resource type exhibits logistic growth with intrinsic rate of increase, rRl, and carrying capacity, KRl = 1/αRl, such that growth rate of resource l is
Similarly, each predator species m exhibits logistic growth in the absence of the prey of interest with intrinsic growth rate rPm and carrying capacity KPm = 1/αPm. The growth rate of a predator species is also increased by consuming prey species where again the attack rate of predator species m on prey j is ajm. Each unit of prey has a value to predator growth rate of w. Given these two sources of predator growth, the density of predator m, Pm, has a per-capita growth rate
where the summation terms is contributions to growth from consumption over all j focal species. The system of equations describes a model of trophic interactions between three sets of species: focal species, their resources, and their predators.
Given this model, the average fitness of a species j is
where the sensitivity to competition and predation is
The average fitness of a species takes into account growth based on resource capture and predation as well as how much resource and predator densities change from interactions with the focal species.
The amount of niche overlap between two competitors i and j is
which represents the amount to which resource consumption and predator attack are linearly related between two competing species, i and j.
This model conditions for coexistence can be directly related to the general coexistence criterion: intraspecific competition, αjj, must be greater than interspecific competition, αij. The direct expressions for intraspecific and interspecific competition coefficients from the interaction between shared predators and resources are
and
Thus, when intraspecific competition is greater than interspecific competition,
which, for two species leads to the coexistence criteria
Notice that, in the absence of any niche differences (i.e. ρ = 1), species cannot coexist.
A 2012 study [9] reviewed different approaches which tested coexistence theory, and identified three main ways to separate the contributions of stabilizing and equalizing mechanisms within a community. These are:
A 2010 review [11] argued that an invasion analysis should be used as the critical test of coexistence. In an invasion analysis, one species (termed the "invader") is removed from the community, and then reintroduced at a very low density. If the invader shows positive population growth, then it cannot be excluded from the community. If every species has a positive growth rate as an invader, then those species can stably coexist. An invasion analysis could be performed using experimental manipulation, or by parameterizing a mathematical model. The authors argued that in the absence of a full-scale invasion analysis, studies could show some evidence for coexistence by showing that a trade-off produced negative density-dependence at the population level. The authors reviewed 323 papers (from 1972 to May 2009), and claimed that only 10 of them met the above criteria (7 performing an invasion analysis, and 3 showing some negative-density dependence).
However, an important caveat is that invasion analysis may not always be sufficient for identifying stable coexistence. For example, priority effects or Allee effects may prevent species from successfully invading a community from low density even if they could persist stably at a higher density. Conversely, high order interactions in communities with many species can lead to complex dynamics following an initially successful invasion, potentially preventing the invader from persisting stably in the long term. [12] For example, an invader that can only persist when a particular resident species is present at high density could alter community structure following invasion such that that resident species' density declines or that it goes locally extinct, thereby preventing the invader from successfully establishing in the long term.
The 2001 Neutral theory by Stephen P. Hubbell [13] attempts to model biodiversity through a migration-speciation-extinction balance, rather through selection. [14] It assumes that all members within a guild are inherently the same, and that changes in population density are a result of random births and deaths. Particular species are lost stochastically through a random walk process, but species richness is maintained via speciation or external migration. Neutral theory can be seen as a particular case of coexistence theory: it represents an environment where stabilizing mechanisms are absent (i.e., ), and there are no differences in average fitness (i.e., for all species). [15]
It has been hotly debated how close real communities are to neutrality. Few studies have attempted to measure fitness differences and stabilizing mechanisms in plant communities, for example in 2009 [16] or in 2015 [17] These communities appear to be far from neutral, and in some cases, stabilizing effects greatly outweigh fitness differences.
Cultural Coexistence Theory (CCT), also called Social-ecological Coexistence Theory, expands on coexistence theory to explain how groups of people with shared interests in natural resources (e.g., a fishery) can come to coexist sustainably. [18] Cultural Coexistence Theory draws on work by anthropologists such as Frederik Barth and John Bennett, both of whom studied the interactions among culture groups on shared landscapes. In addition to the core ecological concepts described above, which CCT summarizes as limited similarity, limited competition, and resilience, CCT argues the following features are essential for cultural coexistence:
Cultural Coexistence Theory fits in under the broader area of sustainability science, common pool resources theory, and conflict theory.
Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.
Mutualism describes the ecological interaction between two or more species where each species has a net benefit. Mutualism is a common type of ecological interaction. Prominent examples are:
In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".
This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.
Liebig's law of the minimum, often simply called Liebig's law or the law of the minimum, is a principle developed in agricultural science by Carl Sprengel (1840) and later popularized by Justus von Liebig. It states that growth is dictated not by total resources available, but by the scarcest resource. The law has also been applied to biological populations and ecosystem models for factors such as sunlight or mineral nutrients.
The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:
The unified neutral theory of biodiversity and biogeography is a theory and the title of a monograph by ecologist Stephen P. Hubbell. It aims to explain the diversity and relative abundance of species in ecological communities. Like other neutral theories of ecology, Hubbell assumes that the differences between members of an ecological community of trophically similar species are "neutral", or irrelevant to their success. This implies that niche differences do not influence abundance and the abundance of each species follows a random walk. The theory has sparked controversy, and some authors consider it a more complex version of other null models that fit the data better.
The Allee effect is a phenomenon in biology characterized by a correlation between population size or density and the mean individual fitness of a population or species.
Intraspecific competition is an interaction in population ecology, whereby members of the same species compete for limited resources. This leads to a reduction in fitness for both individuals, but the more fit individual survives and is able to reproduce. By contrast, interspecific competition occurs when members of different species compete for a shared resource. Members of the same species have rather similar requirements for resources, whereas different species have a smaller contested resource overlap, resulting in intraspecific competition generally being a stronger force than interspecific competition.
The paradox of enrichment is a term from population ecology coined by Michael Rosenzweig in 1971. He described an effect in six predator–prey models where increasing the food available to the prey caused the predator's population to destabilize. A common example is that if the food supply of a prey such as a rabbit is overabundant, its population will grow unbounded and cause the predator population to grow unsustainably large. That may result in a crash in the population of the predators and possibly lead to local eradication or even species extinction.
Competition is an interaction between organisms or species in which both require a resource that is in limited supply. Competition lowers the fitness of both organisms involved since the presence of one of the organisms always reduces the amount of the resource available to the other.
Interspecific competition, in ecology, is a form of competition in which individuals of different species compete for the same resources in an ecosystem. This can be contrasted with mutualism, a type of symbiosis. Competition between members of the same species is called intraspecific competition.
The storage effect is a coexistence mechanism proposed in the ecological theory of species coexistence, which tries to explain how such a wide variety of similar species are able to coexist within the same ecological community or guild. The storage effect was originally proposed in the 1980s to explain coexistence in diverse communities of coral reef fish, however it has since been generalized to cover a variety of ecological communities. The theory proposes one way for multiple species to coexist: in a changing environment, no species can be the best under all conditions. Instead, each species must have a unique response to varying environmental conditions, and a way of buffering against the effects of bad years. The storage effect gets its name because each population "stores" the gains in good years or microhabitats (patches) to help it survive population losses in bad years or patches. One strength of this theory is that, unlike most coexistence mechanisms, the storage effect can be measured and quantified, with units of per-capita growth rate.
Relative species abundance is a component of biodiversity and is a measure of how common or rare a species is relative to other species in a defined location or community. Relative abundance is the percent composition of an organism of a particular kind relative to the total number of organisms in the area. Relative species abundances tend to conform to specific patterns that are among the best-known and most-studied patterns in macroecology. Different populations in a community exist in relative proportions; this idea is known as relative abundance.
Limiting similarity is a concept in theoretical ecology and community ecology that proposes the existence of a maximum level of niche overlap between two given species that will allow continued coexistence.
Relative nonlinearity is a coexistence mechanism that maintains species diversity via differences in the response to and effect on variation in resource density or some other factor mediating competition. Relative nonlinearity depends on two processes: 1) species have to differ in the curvature of their responses to resource density and 2) the patterns of resource variation generated by each species must favor the relative growth of another species. In its most basic form, one species grows best under equilibrium competitive conditions and another performs better under variable competitive conditions. Like all coexistence mechanisms, relative nonlinearity maintains species diversity by concentrating intraspecific competition relative to interspecific competition. Because resource density can be variable, intraspecific competition is the reduction of per-capita growth rate under variable resources generated by conspecifics. Interspecific competition is the reduction of per-capita growth rate under variable resources generated by heterospecifics. Like some other coexistence mechanisms, relative nonlinearity can allow coexistence of at least two species on a single resource.
The R* rule is a hypothesis in community ecology that attempts to predict which species will become dominant as the result of competition for resources. The hypothesis was formulated by American ecologist David Tilman. It predicts that if multiple species are competing for a single limiting resource, then whichever species can survive at the lowest equilibrium resource level can outcompete all other species. If two species are competing for two resources, then coexistence is only possible if each species has a lower R* on one of the resources. For example, two phytoplankton species may be able to coexist if one is more limited by nitrogen, and the other is more limited by phosphorus.
The fitness-density covariance is a coexistence mechanism that can allow similar species to coexist because they are in different locations. This effect will be the strongest if species are completely segregated, but can also work if their populations overlap somewhat. If a fitness-density covariance is operating, then when a species becomes very rare, its population will shift to predominantly locations with favorable conditions. Similarly, when a species becomes very common, then conditions will worsen where they are most common, and they will spread into areas where conditions are less favorable. This negative feedback can help species avoid being driven extinct by competition, and it can prevent stronger species from becoming too common and crowding out other species.
In ecology, the competition–colonization trade-off is a stabilizing mechanism that has been proposed to explain species diversity in some biological systems, especially those that are not in equilibrium. In which case some species are particularly good at colonizing and others have well-established survival abilities. The concept of the competition-colonization trade-off was originally proposed by Levins and Culver, the model indicated that two species could coexist if one had impeccable competition skill and the other was excellent at colonizing. The model indicates that there is typically a trade-off, in which a species is typically better at either competing or colonizing. A later model, labelled The Lottery Model was also proposed, in which interspecific competition is accounted for within the population.
In theoretical ecology and nonlinear dynamics, consumer-resource models (CRMs) are a class of ecological models in which a community of consumer species compete for a common pool of resources. Instead of species interacting directly, all species-species interactions are mediated through resource dynamics. Consumer-resource models have served as fundamental tools in the quantitative development of theories of niche construction, coexistence, and biological diversity. These models can be interpreted as a quantitative description of a single trophic level.