Ecotoxicology

Last updated
Ecotoxicity assay for microplastics in Daphnia magna Microplastic toxicity assay in Daphnia magna - 1-s2.0-S0269749120360802-gr2 lrg.jpg
Ecotoxicity assay for microplastics in Daphnia magna

Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the population, community, ecosystem, and biosphere levels. Ecotoxicology is a multidisciplinary field, which integrates toxicology and ecology.

Contents

The ultimate goal of ecotoxicology is to reveal and predict the effects of pollution within the context of all other environmental factors. Based on this knowledge the most efficient and effective action to prevent or remediate any detrimental effect can be identified. In those ecosystems that are already affected by pollution, ecotoxicological studies can inform the choice of action to restore ecosystem services, structures, and functions efficiently and effectively.[ citation needed ]

Ecotoxicology differs from environmental toxicology in that it integrates the effects of stressors across all levels of biological organisation from the molecular to whole communities and ecosystems, whereas environmental toxicology includes toxicity to humans and often focuses upon effects at the organism level and below. [1]

History

Ecotoxicology is a relatively young discipline that made its debuts in the 1970s [2] in the realm of the environmental sciences. Its methodological aspects, derived from toxicology, are widened to encompass the human environmental field and the biosphere at large. While conventional toxicology limits its investigations to the cellular, molecular and organismal scales, ecotoxicology strives to assess the impact of chemical, physicochemical and biological stressors, on populations and communities exhibiting the impacts on entire ecosystems. In this respect, ecotoxicology again takes into consideration dynamic balance under strain.

Ecotoxicology emerged after pollution events that occurred after World War II heightened awareness on the impact of toxic chemical and wastewater discharges towards humankind and the environment. The term "Ecotoxicology" was uttered for the first time in 1969 by René Truhaut, a toxicologist, during an environmental conference in Stockholm. As a result, he was de facto recognized as the originator of this discipline. In fact, the pioneering role of Jean-Michel Jouany, Truhaut's assistant, in conceptualising the discipline [3] and in defining its objectives, [4] is now fully recognized. In Jouany's mindset, ecotoxicology is primarily linked to ecology for its goal seeks to circumscribe the influence that stress factors can have on relationships existing between organisms and their habitat. Jean-Michel Jouany was indeed the young and brilliant mentor of René Truhaut who was at the time empowered to disseminate the emerging discipline proposed by his young assistant at the international level. Jean-Michel Jouany was promoted to the rank of full professor at the University of Nancy in 1969. He then laid out the teaching and research principles for ecotoxicology at the University of Metz with his colleague, Jean-Marie Pelt, as early as 1971. [5]

In France, two universities (Metz and Paris-Sud) markedly contributed to expand this burgeoning discipline during the 1980s and 1990s. Several institutes followed suit in this respect. Indeed, CEMAGREF (now IRSTEA), INERIS, IFREMER and CNRS created research units in ecotoxicology, as did other French universities (in Rouen, Bordeaux, Le Havre, Lyon, Lille, Caen...). [6] During the 1990s, a new offshoot of ecotoxicology casually appears known as Landscape ecotoxicology, whose objective seeks to take into account interactions between landscape ecological processes and environmental toxicants, in particular for species undergoing impediments linked to migratory passageways* (e.g., salmonids).

Common environmental toxicants

Exposure to toxic chemicals

Effects on individuals and entire population

Effects of ecotoxicity on a community

Overall effects

Chemicals are shown to prohibit the growth of seed germination of an arrangement of different plant species. [15] [ better source needed ] Plants are what make up the most vital trophic level of the biomass pyramids, known as the primary producers. Because they are at the bottom of the pyramid, every other organism in an ecosystem relies on the health and abundance of the primary producers in order to survive. If plants are battling problems with diseases relating to exposure to chemicals, other organisms will either die because of starvation or obtain the disease by eating the plants or animals already infected. So ecotoxicology is an ongoing battle that stems from many sources and can affect everything and everyone in an ecosystem.

Ways of prevention

Regulation:

Ecotoxicity testing

Classification of ecotoxicity

Total amount of acute toxicity is directly related to the classification of toxicity.

< 1 part per million → Class I

1–10 parts per million → Class II

10–100 parts per million → Class III [18]

See also

Related Research Articles

<span class="mw-page-title-main">Toxin</span> Naturally occurring organic poison

A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919) and is derived from the word "toxic".

<span class="mw-page-title-main">Toxicology</span> Study of substances harmful to living organisms

Toxicology is a scientific discipline, overlapping with biology, chemistry, pharmacology, and medicine, that involves the study of the adverse effects of chemical substances on living organisms and the practice of diagnosing and treating exposures to toxins and toxicants. The relationship between dose and its effects on the exposed organism is of high significance in toxicology. Factors that influence chemical toxicity include the dosage, duration of exposure, route of exposure, species, age, sex, and environment. Toxicologists are experts on poisons and poisoning. There is a movement for evidence-based toxicology as part of the larger movement towards evidence-based practices. Toxicology is currently contributing to the field of cancer research, since some toxins can be used as drugs for killing tumor cells. One prime example of this is ribosome-inactivating proteins, tested in the treatment of leukemia.

Bioaccumulation is the gradual accumulation of substances, such as pesticides or other chemicals, in an organism. Bioaccumulation occurs when an organism absorbs a substance faster than it can be lost or eliminated by catabolism and excretion. Thus, the longer the biological half-life of a toxic substance, the greater the risk of chronic poisoning, even if environmental levels of the toxin are not very high. Bioaccumulation, for example in fish, can be predicted by models. Hypothesis for molecular size cutoff criteria for use as bioaccumulation potential indicators are not supported by data. Biotransformation can strongly modify bioaccumulation of chemicals in an organism.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Toxicity</span> Degree of harmfulness of substances

Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell (cytotoxicity) or an organ such as the liver (hepatotoxicity). Sometimes the word is more or less synonymous with poisoning in everyday usage.

Chronic toxicity, the development of adverse effects as a result of long term exposure to a contaminant or other stressor, is an important aspect of aquatic toxicology. Adverse effects associated with Chronic toxicity can be directly lethal but are more commonly sublethal, including changes in growth, reproduction, or behavior. Chronic toxicity is in contrast to acute toxicity, which occurs over a shorter period of time to higher concentrations. Various toxicity tests can be performed to assess the Chronic toxicity of different contaminants, and usually last at least 10% of an organism's lifespan. Results of aquatic Chronic toxicity tests can be used to determine water quality guidelines and regulations for protection of aquatic organisms.

<span class="mw-page-title-main">Aquatic toxicology</span> Study of manufactured products on aquatic organisms

Aquatic toxicology is the study of the effects of manufactured chemicals and other anthropogenic and natural materials and activities on aquatic organisms at various levels of organization, from subcellular through individual organisms to communities and ecosystems. Aquatic toxicology is a multidisciplinary field which integrates toxicology, aquatic ecology and aquatic chemistry.

<span class="mw-page-title-main">Persistent organic pollutant</span> Organic compounds that are resistant to environmental degradation

Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic chemicals that adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.

<span class="mw-page-title-main">Bioindicator</span> Species that reveals the status of an environment

A bioindicator is any species or group of species whose function, population, or status can reveal the qualitative status of the environment. The most common indicator species are animals. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot.

Measures of pollutant concentration are used to determine risk assessment in public health.

<span class="mw-page-title-main">Ecotoxicity</span>

Ecotoxicity, the subject of study in the field of ecotoxicology, refers to the biological, chemical or physical stressors that affect ecosystems. Such stressors could occur in the natural environment at densities, concentrations, or levels high enough to disrupt natural biochemical and physiological behavior and interactions. This ultimately affects all living organisms that comprise an ecosystem.

<span class="mw-page-title-main">Environmental toxicology</span>

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

<span class="mw-page-title-main">Environmental impact of pesticides</span> Environmental effect

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

Pollution-induced community tolerance (PICT) is an approach to measuring the response of pollution-induced selective pressures on a community. It is an eco-toxicological tool that approaches community tolerance to pollution from a holistic standpoint. Community Tolerance can increase in one of three ways: physical adaptations or phenotypic plasticity, selection of favorable genotypes, and the replacement of sensitive species by tolerant species in a community.

A mode of toxic action is a common set of physiological and behavioral signs that characterize a type of adverse biological response. A mode of action should not be confused with mechanism of action, which refer to the biochemical processes underlying a given mode of action. Modes of toxic action are important, widely used tools in ecotoxicology and aquatic toxicology because they classify toxicants or pollutants according to their type of toxic action. There are two major types of modes of toxic action: non-specific acting toxicants and specific acting toxicants. Non-specific acting toxicants are those that produce narcosis, while specific acting toxicants are those that are non-narcotic and that produce a specific action at a specific target site.

The predicted no-effect concentration (PNEC) is the concentration of a chemical which marks the limit at which below no adverse effects of exposure in an ecosystem are measured. PNEC values are intended to be conservative and predict the concentration at which a chemical will likely have no toxic effect. They are not intended to predict the upper limit of concentration of a chemical that has a toxic effect. PNEC values are often used in environmental risk assessment as a tool in ecotoxicology. A PNEC for a chemical can be calculated with acute toxicity or chronic toxicity single-species data, Species Sensitivity Distribution (SSD) multi-species data, field data or model ecosystems data. Depending on the type of data used, an assessment factor is used to account for the confidence of the toxicity data being extrapolated to an entire ecosystem.

Toxicological databases are large compilations of data derived from aquatic and environmental toxicity studies. Data is aggregated from a large number of individual studies in which toxic effects upon aquatic and terrestrial organisms have been determined for different chemicals. These databases are then used by toxicologists, chemists, regulatory agencies and scientists to investigate and predict the likelihood that an organic or inorganic chemical will cause an adverse effect on exposed organisms.

<span class="mw-page-title-main">Bioassay</span> Analytical method to determine potency and effect of a substance

A bioassay is an analytical method to determine the potency or effect of a substance by its effect on living animals or plants, or on living cells or tissues. A bioassay can be either quantal or quantitative, direct or indirect. If the measured response is binary, the assay is quantal; if not, it is quantitative.

Valery E. Forbes is an American ecologist and professor specializing in environmental toxicology. Since the start of the 2022-2023 academic season, she has been the Dean of the Charles E. Schmidt College of Science at Florida Atlantic University. Her research expertise is in ecotoxicology, where she primarily studies effects of environmental stresses on organisms at different levels of biological organization.

<span class="mw-page-title-main">Jessica Hua</span> Herpetologist

Jessica Hua is an associate professor in the Department of Biological Sciences at Binghamton University, NY. In addition Hua is the Director for the Center for Integrated Watershed Studies at Binghamton University which focuses on understanding watersheds and the human influences on them through research. She is a herpetologist and oversees her own lab, The Hua Lab, where they focus on ecological interactions, evolutionary processes and ecological-evolutionary feedbacks. Hua's background has led to her appreciation of education with coming from a refugee family who "epitomizes the concept of the American Dream". Her research aims to help others gain opportunities while also establishing a lab that is inclusive and diverse. Hua also enjoys a variety of sports and plays disc golf professionally since 2016.

References

  1. Maltby & Naylor, 1990: [ page needed ]
  2. Ramade, François (2007), Introduction à l'écotoxicologie : Fondements et applications [archive] ; 03-2007 ; Lavoisier, 618 p.
  3. Jouany Jean-Michel, "Nuisances et écologie.", Actualités Pharmaceutiques n°69, 1971, p. 11-22
  4. Vasseur Paule, Masfaraud Jean-Francois, Blaise Christian, "Ecotoxicology: revisiting its pioneers", Environ Sci Pollut Res, 2020 (doi.org/10.1007/s11356-020-11236-7)
  5. "Les fondements de l'écotoxicologie française. Fiche thématique n°22 du Réseau Ecotox.", Fiche thématique Ecotox, août 2019
  6. "Les fondements de l'écotoxicologie française. Fiche thématique n°22 du Réseau Ecotox.", Fiche thématique Ecotox, août 2019
  7. Erkan Kalipci
  8. Oregon State University 2011, March
  9. Desneux, Nicolas; Decourtye, Axel; Delpuech, Jean-Marie (January 2007). "The Sublethal Effects of Pesticides on Beneficial Arthropods". Annual Review of Entomology. 52 (1): 81–106. doi:10.1146/annurev.ento.52.110405.091440. PMID   16842032.
  10. Liess et al. (2016)
  11. Newman, M. C., & Jagoe, C. H.1996
  12. Newman, M. C., & Clements, W. H.2008
  13. Oregon State University.2011, March
  14. Clements, William and Jason Rohr
  15. An, Jing; Zhou, Qixing; Sun, Yuebing; Xu, Zhiqiang (2009-09-01). "Ecotoxicological effects of typical personal care products on seed germination and seedling development of wheat (Triticum aestivum L.)". Chemosphere. 76 (10): 1428–1434. Bibcode:2009Chmsp..76.1428A. doi:10.1016/j.chemosphere.2009.06.004. ISSN   0045-6535. PMID   19631961.
  16. Agency, United States Environmental Protection
  17. The Humane Society of the United States. 2011
  18. The Humane Society of the United States. (2011)

Bibliography

Further reading