Polar ecology

Last updated

Polar ecology is the relationship between plants and animals in a polar environment. Polar environments are in the Arctic and Antarctic regions. Arctic regions are in the Northern Hemisphere, and it contains land and the islands that surrounds it. Antarctica is in the Southern Hemisphere and it also contains the land mass, surrounding islands and the ocean. Polar regions also contain the subantarctic and subarctic zone which separate the polar regions from the temperate regions. Antarctica and the Arctic lie in the polar circles. The polar circles are imaginary lines shown on maps to be the areas that receives less sunlight due to less radiation. These areas either receive sunlight (midnight sun) or shade (polar night) 24 hours a day because of the earth's tilt. Plants and animals in the polar regions are able to withstand living in harsh weather conditions but are facing environmental threats that limit their survival.

Contents

Climate

Polar climates are cold, windy and dry. Because of the lack of precipitation and low temperatures the Arctic and Antarctic are considered the world's largest deserts or Polar deserts. [1] [2] Much of the radiation from the Sun that is received is reflected off the snow making the polar regions cold. [3] When the radiation is reflected, the heat is also reflected. The polar regions reflect 89-90% of the Sun radiation that the Earth receives. [4] And because Antarctica is closer to the Sun at perihelion, it receives 7% more radiation than the Arctic. [5] Also in the polar region, the atmosphere is thin. Because of this the UV radiation that gets to the atmosphere can cause fast sun tanning and snow blindness.

Polar regions are dry areas; there is very little precipitation due to the cold air. There are some times when the humidity may be high but the water vapor present in the air may be low. Wind is also strong in the polar region. Wind carries snow creating blizzard like conditions. Winds may also move small organisms or vegetation if it is present. [6] The wind blows the snow making snowdrifts or snow dunes which may exist even in the spring when the snow is thawing out. [6] It is hard for meteorologists to measure the amount of precipitation. This is because it is expensive to take care of the stations that collect weather data and it hard for them to measure snowfall amounts because the wind blows the snow too much to calculate exact amounts.

The temperatures are similar between the Arctic and Antarctic. The temperatures in the Arctic are different depending on the location. Temperatures in the Arctic have a higher range than in the Antarctic. Temperatures can range as much as 100 °C (180 °F). Along the coast in the Arctic temperatures average −30 to −40 °C (−22 to −40 °F) in December, January and February. [7] The ice melts along the coast during the summer months which are around June, July and August and the temperature may rise a few degrees above freezing causing there to be some vegetation. During these same months in the northern regions, there will be 24 hours of daylight. Arctic regions also receive a lot of snowfall. The Arctic Basin has snow 320 days out of the year while the Arctic Seas have snow cover 260 days a year. [8] The thickness of the snow averages 30–40 cm (12–16 in). [8] In Greenland, temperatures have an average temperature of −40 °C (−40 °F) in the winter and in the summer the temperatures reach −12 °C (10 °F). Iceland, on the other hand, is in a subarctic region meaning it is near the temperate zone. Because of this, the temperatures are above the freezing point throughout much of the year. In Russia, temperatures are extremely cold. In Verkhoyansk, Siberia it has reached the coldest temp of −68.8 °C (−91.8 °F) in the Northern Hemisphere. [9] The temperatures in the summer in Siberia can get to 36 °C (97 °F).

In the Antarctic, there are fewer temperature variations. Temperatures only range by around 30 °C (54 °F). The winter months are May till September while the summer months will be October till April. The sun reappears in September which then starts the 24 hours of daylight. The temperatures are different between the plateaus in Antarctica and between the coasts. The plateaus are the coldest regions of Antarctica. [10] In the summer months there is low precipitation with light winds. Vostok has received the lowest temperature worldwide getting as low as −88.3 °C (−126.9 °F) in 1960. The West Antarctica plateau reaches snow levels of around 30 cm (12 in). This area is also warmer but it receives the heaviest snow and receives more wind. Because of the cold desert-like conditions on the plateaus, there are very little plants and animals. Some species of birds though have been seen.

On the coasts, in the summer there is more wind, and it is cloudier. Coasts with higher latitudes have a temperature of −24 °C (−11 °F) in the winter months whereas lower latitude coasts get down to −20 °C (−4 °F). Coastal areas may receive 40 cm (16 in) or more of snow.

Water

Water is an important part of human survival. Because of its cold temperature, much of the Earth's water comes from the polar regions. 90% of the world's water comes from the Antarctic ice cap although a lot of this water is not used. [11] Water environments are important for many species around the world. Many bacteria thrive there as well as algae and flora.

Many of the ponds or lakes in polar regions are frozen over or snow-covered for most of the year. Larger lakes thaw out around the edges during the warmer months while the smaller lakes thaw entirely. There are few rivers in the polar regions. The Arctic has more rivers compared to Antarctica. The regions also have ponds. The ponds that attract birds tend to be rich in nutrients. This is because of the bird droppings or bird feathers. [12] There are two different types of lakes in polar regions including Arctic lakes and Antarctic lakes. Of the Arctic lakes, they include glacial lakes and permafrost lakes.

The polar regions include the Arctic Ocean and the Southern Ocean. The Arctic Ocean covers 14,000,000 km2 (5,400,000 sq mi). [13] In the spring the ice covers an area of 5,000,000–8,000,000 km2 (1,900,000–3,100,000 sq mi) and in the winter it is twice that. In this area, it is never totally ice-covered. This is due to the winds breaking up the ice. Because of these cracks in the ice there is more biological productivity in the ocean.

The Southern Ocean is 28,000,000 km2 (11,000,000 sq mi). This ocean contains the Weddell Sea and Ross Sea. The ocean contains large packs of ice that surrounds Antarctica.

Land

Because of the cold weather it is hard for plants to grow. Frozen ground covers most of the polar regions for the majority of the year. Permafrost reaches a thickness of 600–1,000 m (2,000–3,300 ft) deep. Large amounts of permafrost can lead to poor water drainage. Due to the permafrost the water in the soil remains frozen for most of the year. In the summer the top of the permafrost may be covered with water due to melting in the area. [14] Weathering is also common in polar regions. There is rubble from rocks that are scattered on the land due to movement of glaciers. Also quick temperature change causes weathering.

The main type of soil in the polar regions is ahumic soil. [15] This includes the cold desert soil. This soil consists of sand that is frozen. These soils tend to not have an abundant amount of vegetation but bacteria has been found.

The other type of soil is organic soil. This type of soil is found in areas that are warmer and have more moisture. Some vegetation that lives here are algae, fungi and mosses. One type of organic soil is the brown soils, which have drainage.

Animals

Due to the harsh weather in the polar regions, there are not many animals. The animals that do exist in the polar region are similar between the Antarctic and Arctic regions. The animals do differ by the temperature. In the Arctic some invertebrates include spiders, mites, mosquitoes and flies. In warmer areas of the polar regions moths, butterflies and beetles can be found. Some of the larger animals that exist are foxes, wolves, rabbits, hares, polar bears, reindeer/caribou. There are various bird species that have been spotted in the Arctic. Eight species of birds reside on the polar tundra year round while 150 breed in the Arctic. [16] The birds that do breed go to the Arctic between May and July. One of the known birds is the snowy owl, which has enough fat on it to be able to survive in the cold temperatures.

In the Antarctic some invertebrates that exist are mites, fleas and ticks. Antarctica is the only continent that does not have a land mammal population. [17] There are also no birds that reside in Antarctica. Though, it has been known that various birds from South America have been spotted in Antarctica. Two studies have assessed the contributions of soil invertebrates to the polar ecosystem in Antarctica, suggesting that biotic interactions play crucial roles in such a seemingly simple ecosystem. [18] [19]

For animals to be able to live in the polar region they have to have adaptations which allow them to live in the cold and windy environments. These animals have originated with these adaptations, and animals that live in these regions are accumulating adaptations to be able to live in this type of environment. Some of these adaptations may be to be big and insolated, have a lot of fur, and to be darker. Also, many animals live in groups to be able to protect themselves from the cold. Animals also tend to be homeotherms which are animals that maintain a high temperature. [20] Smaller invertebrates also tend to be smaller in polar regions which helps them conserve energy.

There are also many different animals that live in the sea water near polar regions. Squids are one animal that live in both Antarctica and the Arctic. They are the food source for other large animals such as the male sperm whale. [21] There is also a wide variety of fish in the polar regions. Arctic cod is a major species in the Arctic. Halibut, cod, herring, and Alaska pollock (walleye pollock) are some other types of fish. In Antarctica there is not a lot of diversity among the fish; there is a lot of the same kind. Antarctic silverfish and lanternfish are some examples of fish that live in Antarctica. [22]

Seals are also found in polar regions and number around 2.5 million. [23] They are known to breed on land in the polar regions. Whales are also in the polar regions and can be found near the surfaces of water where they pray.

There are also birds that breed in the polar regions. In the Arctic, 95% of the birds breeding here consists of only four different species. These include the northern fulmar, kittiwake, the little auk and the thick-billed murre. These birds breed here when the ice starts to thaw and when there are cracks in the ice so the birds are able to feed. In the Antarctic there are two different birds that live there including the penguin and the procellariiformes.

Vegetation

There is a wide source of vegetation in the polar region but there are few species in common in the southern and northern polar regions. The Arctic consists of desert and tundra vegetations. The desert vegetation consists of algae, lichens, and mosses. Lichens are the most dominant plants. The ground is bare with a patchy cover of lichens and mosses. [24] Flowering plants are also seen but not as common. It only contains 60 species of flowering plants. The Arctic tundra vegetation also consists of lichens and mosses, but it includes shrubs, grasses and forbs as well. The amount of vegetation in the tundra consists on how much sun, or snow cover is in the area. The vegetation in this area may grow as tall as 50 cm (20 in). In the southern part of the Arctic, there tend to be more shrubs whereas the northern parts there is less plant cover. In wet areas of the tundra, there is tussock grasses and cotton grasses. In moist areas, there are short grasses, mosses, willows, and birches.

The Antarctic vegetation consists of algae or lichens, and some bacteria and fungi, although mosses and lichens dominate. The algae and lichens grow where there is moisture, and they hide in cracks to be protected from the wind. The dominant grassland is the tussock. These grasses get to be 2 m (6 ft 7 in) high, so they provide habitat for many mammals. [25] Of the 14,000,000 km2 (5,400,000 sq mi) of land that makes up Antarctic, less than 2% of it does not have snow or ice. [26]

One example of a type of vegetation is a crustose lichen. These lichens are found in moist areas that are hidden from the wind. They hide on the surface of rocks in the cracks. They survive off the water that melts from above. These lichens occur in Canada and Alaska, as well as Greenland and Iceland. These lichens can be red or orange colored and are known to defoliate rocks. [27]

Threats

There exist many threats to the polar regions. One threat is whaling. Whaling started in the 16th century. People hunted whales to sell meat. By 1925 the number of whales being killed rose from 14,000 to 40,000 [ clarification needed ][ citation needed ]. The International Whaling Commission tried to stop whaling in the 20th century, [28] but was unsuccessful.

Overfishing is another threat to the polar regions. In the Bering Sea there is a lot of fishing due to the high populations of halibut and Alaskan Pollock. Around the 1970s krill began to become a popular crustacean to catch. The Soviet Union started advertising food with krill in it and they started overfishing krill. It has been estimated that 40 tonnes of krill per hour were caught during this time. [29] In 1982, the exclusive economic zone was established. This said that a certain country can fish 200 nmi (370 km; 230 mi) off the shore. The country is now able to control who fishes in their EEZ area. But the EEZ has been unsuccessful.

Another threat is pollution. There are many land and water areas within the polar regions that are contaminated. This can be due to the transport of oil by large ships. Siberia is one example of a place that has had major pollution in its rivers. [30]

Depletion on the ozone layer is one more threat. An ozone hole has been detected above Antarctica. The cause of the depletion of the ozone layer is due to chlorofluorocarbons and other greenhouse gases. The other main reason is due to man-made gases that are released into the atmosphere. There are many environmental effects due to this because of the gases that are being released five times faster than they are destroyed. [31]

Global warming is also having an effect on the Arctic and Antarctic regions. Global warming is causing the temperature on the earth to increase. In Plan B 2.0 Lester R. Brown talks about how the Arctic is warming twice as fast as the rest of the world. [32] He goes on to say that the temperature in the Arctic region has increased by 3–4 °C (5–7 °F) within the last half-century. And with the increase in temperatures, some worry that this will cause the sea level to rise. Scientists believe that if the Greenland ice sheet melts then the sea level could rise by 23 ft (7.0 m) [33] The melting of this ice sheet or others could have an effect on ocean currents. It could cause lower temperatures in northern North America. Rising of the sea level will also impact coastal areas. One example is in Bangladesh. If there was a 1 m (3 ft 3 in) increase in sea level then millions of people would have to migrate from the coast. Global warming is also affecting Antarctica. The Larsen Ice Shelf or Larsen A is an ice sheet on the Antarctic Peninsula. The sheet broke in 1995, and then in 2000 an iceberg that is 4,250 sq mi (11,000 km2) broke off the Ross Ice Shelf in Antarctica. [34] In 2002 Larsen B, which was 5,500 km2 (2,100 sq mi), broke off.

Global warming affects plants and animals. For plants, the warmer temperatures induce stress on the plants. [35] For animals, there has been a decrease in the number of polar bears in the Hudson Bay area. [36] Since 1981, the polar bear population has been declining. This is because global warming causes the ice to break up faster so the polar bears are going to the coasts when there are poor conditions. [36]

Conservation efforts

Whoever owns the land is responsible or managing it. And the owners of the land differ between the Antarctic and Arctic and also within the polar regions. In the Arctic, there are six nations that own the land about 60°N. These nations include: Canada, Russia, Finland, USA, Denmark, Iceland and Norway. [37] There have been international treaties set up so there are no disputes. These nations have also set their government to manage the land properly. They have set up national parks, land for wilderness, and also land for research. In the polar regions, there have been laws set up to manage the number of visitors. There have been rules set up allowing only a certain amount of mining to be done and other measures to protect the environment from damages.

In the Antarctic, the owners of the land are less clear. Some areas of Antarctica are controlled by the French, while other areas are controlled by South Africa, Australia, New Zealand, and the UK. [38] Whoever owns the Antarctic is still unclear therefore many other countries have put out scientific stations. The Antarctic Treaty System of 1961 was established to make sure all the conflicts were resolved about who owned the land. This and other treaties have shown interest in helping to conserve the Antarctic region. All of these countries have conservation laws. These laws manage the amount of hunting in the area, monitor invasive species, and control burning and settlement.

See also

Related Research Articles

<span class="mw-page-title-main">Frost</span> Coating or deposit of ice

Frost is a thin layer of ice on a solid surface, which forms from water vapor that deposits onto a freezing surface. Frost forms when the air contains more water vapor than it can normally hold at a specific temperature. The process is similar to the formation of dew, except it occurs below the freezing point of water typically without crossing through a liquid state.

<span class="mw-page-title-main">Tundra</span> Biome where plant growth is hindered by frigid temperatures

In physical geography, tundra is a type of biome where tree growth is hindered by frigid temperatures and short growing seasons. The term comes from the Finnish word tunturia, meaning "treeless plain". There are three regions and associated types of tundra: Arctic tundra, alpine tundra, and Antarctic tundra.

<span class="mw-page-title-main">Arctic</span> Polar region of the Earths northern hemisphere

The Arctic is a polar region located at the northernmost part of Earth. The Arctic region consists of the Arctic Ocean, adjacent seas, and parts of Canada, Danish Realm (Greenland), northern Finland, northern Iceland, northern Norway, Russia, northernmost Sweden and the United States (Alaska). Land within the Arctic region has seasonally varying snow and ice cover, with predominantly treeless permafrost under the tundra. Arctic seas contain seasonal sea ice in many places.

<span class="mw-page-title-main">Cryosphere</span> Those portions of Earths surface where water is in solid form

The cryosphere is an all-encompassing term for the portions of Earth's surface where water is in solid form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground. Thus, there is a wide overlap with the hydrosphere. The cryosphere is an integral part of the global climate system with important linkages and feedbacks generated through its influence on surface energy and moisture fluxes, clouds, precipitation, hydrology, atmospheric and oceanic circulation.

<span class="mw-page-title-main">Polar climate</span> Climate classification

The polar climate regions are characterized by a lack of warm summers but with varying winters. Every month a polar climate has an average temperature of less than 10 °C (50 °F). Regions with a polar climate cover more than 20% of the Earth's area. Most of these regions are far from the equator and near the poles, and in this case, winter days are extremely short and summer days are extremely long. A polar climate consists of cool summers and very cold winters, which results in treeless tundra, glaciers, or a permanent or semi-permanent layer of ice. It is identified with the letter E in the Köppen climate classification.

<span class="mw-page-title-main">Alpine tundra</span> Biome found at high altitudes

Alpine tundra is a type of natural region or biome that does not contain trees because it is at high elevation, with an associated harsh climate. As the latitude of a location approaches the poles, the threshold elevation for alpine tundra gets lower until it reaches sea level, and alpine tundra merges with polar tundra.

<span class="mw-page-title-main">McMurdo Dry Valleys</span> Snow-free valleys in Antarctica

The McMurdo Dry Valleys are a row of largely snow-free valleys in Antarctica, located within Victoria Land west of McMurdo Sound. The Dry Valleys experience extremely low humidity and surrounding mountains prevent the flow of ice from nearby glaciers. The rocks here are granites and gneisses, and glacial tills dot this bedrock landscape, with loose gravel covering the ground. It is one of the driest places on Earth and is sometimes claimed to have not seen rain in nearly two million years, though this is highly unlikely and several anecdotal accounts of rainfall within the Dry Valleys exist.

<span class="mw-page-title-main">Beaufort Island</span> Island in Ross Sea off the coast of Antarctica

Beaufort Island is an island in Antarctica's Ross Sea. It is the northernmost feature of the Ross Archipelago, lying 21 kilometres north of Cape Bird, Ross Island. It is approximately 18.4 km2 in area. It was first charted by James Clark Ross in 1841. Ross named the island for Sir Francis Beaufort, hydrographer to the British Royal Navy.

<span class="mw-page-title-main">Arctic Cordillera</span> Terrestrial ecozone in northern Canada

The Arctic Cordillera is a terrestrial ecozone in northern Canada characterized by a vast, deeply dissected chain of mountain ranges extending along the northeastern flank of the Canadian Arctic Archipelago from Ellesmere Island to the northeasternmost part of the Labrador Peninsula in northern Labrador and northern Quebec, Canada. It spans most of the eastern coast of Nunavut with high glaciated peaks rising through ice fields and some of Canada's largest ice caps, including the Penny Ice Cap on Baffin Island. It is bounded to the east by Baffin Bay, Davis Strait and the Labrador Sea while its northern portion is bounded by the Arctic Ocean.

<span class="mw-page-title-main">Climate change in the Arctic</span> Impacts of climate change on the Arctic

Major environmental issues caused by contemporary climate change in the Arctic region range from the well-known, such as the loss of sea ice or melting of the Greenland ice sheet, to more obscure, but deeply significant issues, such as permafrost thaw, as well as related social consequences for locals and the geopolitical ramifications of these changes. The Arctic is likely to be especially affected by climate change because of the high projected rate of regional warming and associated impacts. Temperature projections for the Arctic region were assessed in 2007: These suggested already averaged warming of about 2 °C to 9 °C by the year 2100. The range reflects different projections made by different climate models, run with different forcing scenarios. Radiative forcing is a measure of the effect of natural and human activities on the climate. Different forcing scenarios reflect things such as different projections of future human greenhouse gas emissions.

<span class="mw-page-title-main">Climate of the Arctic</span> Climate types in the Arctic region

The climate of the Arctic is characterized by long, cold winters and short, cool summers. There is a large amount of variability in climate across the Arctic, but all regions experience extremes of solar radiation in both summer and winter. Some parts of the Arctic are covered by ice year-round, and nearly all parts of the Arctic experience long periods with some form of ice on the surface.

<span class="mw-page-title-main">Antarctica</span> Continent

Antarctica is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean, it contains the geographic South Pole. Antarctica is the fifth-largest continent, being about 40% larger than Europe, and has an area of 14,200,000 km2 (5,500,000 sq mi). Most of Antarctica is covered by the Antarctic ice sheet, with an average thickness of 1.9 km (1.2 mi).

<span class="mw-page-title-main">Climate of Svalbard</span>

Svalbard is a Norwegian archipelago in the Arctic Ocean. The climate of Svalbard is principally a result of its latitude, which is between 74° and 81° north. Climate is defined by the World Meteorological Organization as the average weather over a 30-year period. The North Atlantic Current moderates Svalbard's temperatures, particularly during winter, giving it up to 20 °C (36 °F) higher winter temperature than similar latitudes in continental Russia and Canada. This keeps the surrounding waters open and navigable most of the year. The interior fjord areas and valleys, sheltered by the mountains, have fewer temperature differences than the coast, with about 2 °C lower summer temperatures and 3 °C higher winter temperatures. On the south of the largest island, Spitsbergen, the temperature is slightly higher than further north and west. During winter, the temperature difference between south and north is typically 5 °C, and about 3 °C in summer. Bear Island (Bjørnøya) has average temperatures even higher than the rest of the archipelago.

<span class="mw-page-title-main">North American Arctic</span>

The North American Arctic is composed of the northern polar regions of Alaska (USA), Northern Canada and Greenland. Major bodies of water include the Arctic Ocean, Hudson Bay, the Gulf of Alaska and North Atlantic Ocean. The North American Arctic lies above the Arctic Circle. It is part of the Arctic, which is the northernmost region on Earth. The western limit is the Seward Peninsula and the Bering Strait. The southern limit is the Arctic Circle latitude of 66° 33’N, which is the approximate limit of the midnight sun and the polar night.

<span class="mw-page-title-main">Antarctic microorganism</span>

Antarctica is one of the most physically and chemically extreme terrestrial environments to be inhabited by lifeforms. The largest plants are mosses, and the largest animals that do not leave the continent are a few species of insects.

<span class="mw-page-title-main">Ice cap climate</span> Polar climate where no mean monthly temperature exceeds 0 °C (32 °F)

An ice cap climate is a polar climate where no mean monthly temperature exceeds 0 °C (32 °F). The climate generally covers areas at high altitudes and polar regions, such as Antarctica and some of the northernmost islands of Canada and Russia. Most of Greenland is under the influence of an ice cap climate, although the coasts are prone to more influence from the sea, providing more tundra climates. Some regions on the islands of Norway's Svalbard Archipelago facilitate an ice cap climate. Areas with ice cap climates are normally covered by a permanent layer of ice and have no vegetation. There is limited animal life in most ice cap climates, which are usually found near the oceanic margins. Although ice cap climates are inhospitable to human life and no civilian communities lie in such climates, there are some research stations scattered in Antarctica and interior Greenland.

<span class="mw-page-title-main">Wildlife of Antarctica</span> Antarctic wildlife

The wildlife of Antarctica are extremophiles, having adapted to the dryness, low temperatures, and high exposure common in Antarctica. The extreme weather of the interior contrasts to the relatively mild conditions on the Antarctic Peninsula and the subantarctic islands, which have warmer temperatures and more liquid water. Much of the ocean around the mainland is covered by sea ice. The oceans themselves are a more stable environment for life, both in the water column and on the seabed.

<span class="mw-page-title-main">Climate change in Antarctica</span> Impacts of climate change on Antarctica

Climate change caused by greenhouse gas emissions from human activities occurs everywhere on Earth, and while Antarctica is less vulnerable to it than any other continent, climate change in Antarctica has already been observed. There has been an average temperature increase of >0.05 °C/decade since 1957 across the continent, although it had been uneven. While West Antarctica warmed by over 0.1 °C/decade from the 1950s to the 2000s and the exposed Antarctic Peninsula has warmed by 3 °C (5.4 °F) since the mid-20th century, the colder and more stable East Antarctica had been experiencing cooling until the 2000s. Around Antarctica, the Southern Ocean has absorbed more heat than any other ocean, with particularly strong warming at depths below 2,000 m (6,600 ft) and around the West Antarctic, which has warmed by 1 °C (1.8 °F) since 1955.

<span class="mw-page-title-main">Canadian Arctic tundra</span>

The Canadian Arctic tundra is a biogeographic designation for Northern Canada's terrain generally lying north of the tree line or boreal forest, that corresponds with the Scandinavian Alpine tundra to the east and the Siberian Arctic tundra to the west inside the circumpolar tundra belt of the Northern Hemisphere.

<span class="mw-page-title-main">Tundra of North America</span>

The Tundra of North America is a Level I ecoregion of North America designated by the Commission for Environmental Cooperation (CEC) in its North American Environmental Atlas.

References

  1. The World's Largest Deserts
  2. Types of Seserts
  3. Stonehouse, 23
  4. Stonehouse, 24
  5. Factors affecting surface ultraviolet radiation levels in the Arctic
  6. 1 2 Stonehouse, 44
  7. Stonehouse, 48
  8. 1 2 Melnikov, 14
  9. Stonehouse, 51
  10. Stonehouse, 52
  11. Stonehouse, 106
  12. Stonehouse, 109
  13. Stonehouse, 127
  14. Stonehouse, 69
  15. Antarctic Soils and Soil Forming Processes: J. C. F. Tedrow, Editor
  16. Stonehouse, 96
  17. Stonehouse, 105
  18. Cary, S. Craig; Green, T. G. Allan; Storey, Bryan C.; Sparrow, Ashley D.; Hogg, Ian D.; Katurji, Marwan; Zawar-Reza, Peyman; Jones, Irfon; Stichbury, Glen A. (2019-02-15). "Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem". Communications Biology. 2 (1): 62. doi:10.1038/s42003-018-0274-5. ISSN   2399-3642. PMC   6377621 . PMID   30793041.
  19. Adams, Byron J.; Wall, Diana H.; Storey, Bryan C.; Green, T. G. Allan; Barrett, John E.; S. Craig Cary; Hopkins, David W.; Lee, Charles K.; Bottos, Eric M. (2019-02-15). "Nematodes in a polar desert reveal the relative role of biotic interactions in the coexistence of soil animals". Communications Biology. 2 (1): 63. doi:10.1038/s42003-018-0260-y. ISSN   2399-3642. PMC   6377602 . PMID   30793042.
  20. 177[ clarification needed ]
  21. Fogg, 202
  22. Fogg, 204
  23. Fogg, 206
  24. Stonehouse, 83
  25. Fogg, 96
  26. Bergstrom, 161
  27. 72 [ clarification needed ]
  28. Stonehouse, 192
  29. Fogg, 221
  30. Nuttall, 529
  31. Brown, 31
  32. Brown, 70
  33. Brown, 71
  34. Brown, 72
  35. Marchand
  36. 1 2 Stirling, 294
  37. Stonehouse, 193
  38. Stonehouse, 194

Bibliography