Weddell Sea

Last updated
Weddell Sea
Antarctic-seas-en.svg
The location of the Weddell Sea, part of the Southern Ocean
Antarctica Weddell Sea region relief location map.png
Map of the Weddell Sea with bathymetry and surrounding relief
Location Southern Ocean
Coordinates 73°S45°W / 73°S 45°W / -73; -45
Type Sea
Basin  countries Argentine Antarctica, British Antarctic Territory, partially within the Antarctic Chilean Territory.
Surface area2,800,000 km2 (1,081,100 sq mi)
Average depth500 m (1,640 ft)
Max. depth5,148 m (16,890 ft)
Frozenpartially

The Weddell Sea is part of the Southern Ocean and contains the Weddell Gyre. Its land boundaries are defined by the bay formed from the coasts of Coats Land and the Antarctic Peninsula. The easternmost point is Cape Norvegia at Princess Martha Coast, Queen Maud Land. To the east of Cape Norvegia is the King Haakon VII Sea. Much of the southern part of the sea is covered by a permanent, massive ice shelf field, the Filchner-Ronne Ice Shelf.

Contents

The sea is contained within the two overlapping Antarctic territorial claims of Argentine Antarctica, the British Antarctic Territory, and also resides partially within the Antarctic Chilean Territory. At its widest the sea is around 2,000 kilometres (1,200 mi) across, and its area is around 2.8 million square kilometres (1.1×10^6 sq mi). [1]

Various ice shelves, including the Filchner-Ronne Ice Shelf, fringe the Weddell sea. Some of the ice shelves on the east side of the Antarctic Peninsula, which formerly covered roughly 10,000 square kilometres (3,900 sq mi) of the Weddell Sea, had completely disappeared by 2002. [2] The Weddell Sea has been deemed by scientists to have the clearest water of any sea. Researchers from the Alfred Wegener Institute, on finding a Secchi disc visible at a depth of 80 metres (260 ft) on 13 October 1986, ascertained that the clarity corresponded to that of distilled water. [3]

In his 1950 book The White Continent, historian Thomas R. Henry writes: "The Weddell Sea is, according to the testimony of all who have sailed through its berg-filled waters, the most treacherous and dismal region on Earth. The Ross Sea is relatively peaceful, predictable, and safe." [4] He continues for an entire chapter, relating myths of the green-haired merman sighted in the sea's icy waters, the inability of crews to navigate a path to the coast until 1949, and treacherous "flash freezes" that left ships, such as Ernest Shackleton's Endurance, at the mercy of the ice floes.

Etymology

The sea is named after the Scottish sailor James Weddell, who entered the sea in 1823 and originally named it after King George IV; it was renamed in Weddell's honour in 1900. [5] Also in 1823, the American sealing captain Benjamin Morrell claimed to have seen land some 10–12° east of the sea's actual eastern boundary. He called this New South Greenland, but its existence was disproved when the sea was more fully explored in the early 20th century. Weddell got as far south as 74°S; the furthest southern penetration since Weddell but before the modern era was made by William Speirs Bruce in 1903.

The Weddell Sea is an important area of deep water mass formation through cabbeling, the main driving force of the thermohaline circulation. Deepwater masses are also formed through cabbeling in the North Atlantic and are caused by differences in temperature and salinity of the water. In the Weddell sea, this is brought about mainly by brine exclusion and wind cooling.

History

Scarred and chiselled sea ice in the Weddell Sea NASA's DC-8 Flying Over the Weddell Sea.jpg
Scarred and chiselled sea ice in the Weddell Sea
Small Tabular Icebergs (26376305448).jpg

In 1823, British sailor James Weddell discovered the Weddell Sea. Otto Nordenskiöld, leader of the 1901–1904 Swedish Antarctic Expedition, spent a winter at Snow Hill with a team of four men when the relief ship became beset in ice and was crushed. The crew managed to reach Paulet Island where they wintered in a primitive hut. Nordenskiöld and the others were eventually picked up by the Argentine Navy at Hope Bay. All but one survived the ordeal.

The Antarctic Sound is named after the expedition ship of Otto Nordenskiöld. The sound that separates the tip of the Antarctic Peninsula from Dundee Island is also referred to as "Iceberg Alley", because of the huge icebergs that are often seen here. Snowhill Island, located east of the Antarctic Peninsula is almost completely snow-capped, hence its name. The Swedish Antarctic Expedition under Otto Nordenskiöld built a cabin on the island in 1902, where Nordenskiöld and three members of the expedition had to spend two winters.

In 1915, Ernest Shackleton's ship, Endurance, got trapped and was crushed by ice in this sea. After 15 months on the pack-ice Shackleton and his men managed to reach Elephant Island and safely returned home. [6] In March 2022, it was announced that the well-preserved wreck of the Endurance had been discovered four miles (6.4 km) from its anticipated location, at a depth of 3,008 metres (9,869 ft). [7]

Geology

As with other neighboring parts of Antarctica, the Weddell Sea shares a common geological history with southernmost South America. In southern Patagonia at the onset of the Andean orogeny in the Jurassic extensional tectonics created the Rocas Verdes Basin, a back-arc basin whose surviving southeastward extension forms the Weddell Sea. [8] [9] In the Late Cretaceous the tectonic regime of Rocas Verdes Basin changed leading to its transformation into a compressional foreland basin – the Magallanes Basin – in the Cenozoic. [8] While this happened in South America the Weddell Sea part of the basin escaped compressional tectonics and remained an oceanic basin. [9]

Oceanography

The Weddell Sea is one of few locations in the World Ocean where deep and bottom water masses are formed to contribute to the global thermohaline circulation which has been warming slowly over the last decade. [10] The characteristics of exported water masses result from complex interactions between surface forcing, significantly modified by sea ice processes, ocean dynamics at the continental shelf break, and slope and sub-ice shelf water mass transformation. [11]

Circulation in the western Weddell Sea is dominated by a northward flowing current. This northward current is the western section of a primarily wind-driven, cyclonic gyre called the Weddell Gyre. This northward flow serves as the primary force of departure of water from the Weddell Sea, a major site of ocean water modification and deep water formation, to the remainder of the World Ocean. The Weddell Gyre is a cold, low salinity surface layer separated by a thin, weak pycnocline from a thick layer of relatively warm and salty water referred to as Weddell Deep Water (WDW), and a cold bottom layer. [12]

Circulation in the Weddell Sea has proven difficult to quantify. Geopotential surface heights above the 1000 dB level, computed using historical data, show only very weak surface currents. Similar computations carried out using more closely spaced data also showed small currents. Closure of the gyre circulation was assumed to be driven by Sverdrup transport. The Weddell Sea is a major site for deep water formation.

Thus, in addition to a wind-driven gyre component of the boundary current, a deeper circulation whose dynamics and transports reflect an input of dense water in the southern and southwestern Weddell Sea are expected. Available data does not lend to the quantification of the volume transports associated with this western boundary region, or to the determination of deep convective circulation along the western boundary. [12]

Climate

The predominance of strong surface winds parallel to the narrow and tall mountain range of the Antarctic Peninsula is a remarkable feature of weather and climate in the area of the western Weddell Sea. The winds carry cold air toward lower latitudes and turn into southwesterlies farther north.

These winds are of interest not only because of their effect on the temperature regime east of the peninsula but also because they force the drift of ice northeastward into the South Atlantic Ocean as the last branch of the clockwise circulation in the lower layers of the atmosphere along the coasts of the Weddell Sea. The sharp contrast between the wind, temperature, and ice conditions of the two sides of the Antarctic Peninsula has been well known for many years. [13]

Strong surface winds directed equatorward along the east side of the Antarctic Peninsula can appear in two different types of synoptic-meteorological situations: an intense cyclone over the central Weddell Sea, a broad east to west flow of stable cold air in the lowest 500-to-1000-metre layer of the atmosphere over the central and/or southern Weddell Sea toward the peninsula. These conditions lead to cold air piling up on the east edge of the mountains. This process leads to the formation of a high-pressure ridge over the peninsula (mainly east of the peak) and, therefore, a deflection of the originally westward current of air to the right, along the mountain wall. [13]

Ecology

The Weddell Sea is abundant with whales and seals. Characteristic fauna of the sea include the Weddell seal and killer whales, humpback whales, minke whales, leopard seals, and crabeater seals are frequently seen during Weddell Sea voyages.

The Adélie penguin is the dominant penguin species in this remote area because of their adaptation to the harsh environment. A colony of more than 100,000 pairs of Adélies can be found on volcanic Paulet Island.

Around 1997, the northernmost emperor penguin colony was discovered just south of Snowhill Island in the Weddell Sea. As the Weddell Sea is often clogged with heavy pack-ice, strong ice-class vessels equipped with helicopters are required to reach this colony. [6]

In 2021, sponges and other unidentified suspension feeders were reported to have been found growing under the Filchner-Ronne Ice Shelf on a boulder at a depth of 1,233 m (872 of which were ice), 260 km from open water. [14]

In February 2021 the Alfred Wegener Institute for Polar and Marine Research with RV Polarstern, a colony of approximately 60 million Jonah's icefish was found to inhabit an area in the Weddell Sea. It is estimated that the colony covers around 240 square kilometers, with an average of one nest per every three square meters. [15] [16]

Seabed features

Related Research Articles

<span class="mw-page-title-main">Geography of Antarctica</span> Geographic features of Antarctica

The geography of Antarctica is dominated by its south polar location and, thus, by ice. The Antarctic continent, located in the Earth's southern hemisphere, is centered asymmetrically around the South Pole and largely south of the Antarctic Circle. It is washed by the Southern Ocean or, depending on definition, the southern Pacific, Atlantic, and Indian Oceans. It has an area of more than 14 million km2. Antarctica is the largest ice desert in the world.

<span class="mw-page-title-main">Antarctic Circumpolar Current</span> Ocean current that flows clockwise from west to east around Antarctica

Antarctic Circumpolar Current (ACC) is an ocean current that flows clockwise from west to east around Antarctica. An alternative name for the ACC is the West Wind Drift. The ACC is the dominant circulation feature of the Southern Ocean and has a mean transport estimated at 100–150 Sverdrups, or possibly even higher, making it the largest ocean current. The current is circumpolar due to the lack of any landmass connecting with Antarctica and this keeps warm ocean waters away from Antarctica, enabling that continent to maintain its huge ice sheet.

<span class="mw-page-title-main">Downwelling</span> Process of accumulation and sinking of higher density material beneath lower density material

Downwelling is the downward movement of a fluid parcel and its properties within a larger fluid. It is closely related to upwelling, the upward movement of fluid.

<span class="mw-page-title-main">Ross Sea</span> Deep bay of the Southern Ocean in Antarctica

The Ross Sea is a deep bay of the Southern Ocean in Antarctica, between Victoria Land and Marie Byrd Land and within the Ross Embayment, and is the southernmost sea on Earth. It derives its name from the British explorer James Clark Ross who visited this area in 1841. To the west of the sea lies Ross Island and Victoria Land, to the east Roosevelt Island and Edward VII Peninsula in Marie Byrd Land, while the southernmost part is covered by the Ross Ice Shelf, and is about 200 miles (320 km) from the South Pole. Its boundaries and area have been defined by the New Zealand National Institute of Water and Atmospheric Research as having an area of 637,000 square kilometres (246,000 sq mi).

<span class="mw-page-title-main">Ice shelf</span> Large floating platform of ice caused by glacier flowing onto ocean surface

An ice shelf is a large floating platform of ice that forms where a glacier or ice sheet flows down to a coastline and onto the ocean surface. Ice shelves are found in Antarctica and the Arctic. The boundary between the floating ice shelf and the anchor ice that feeds it is the grounding line. The thickness of ice shelves can range from about 100 m (330 ft) to 1,000 m (3,300 ft). The world's largest ice shelves are the Ross Ice Shelf and the Filchner-Ronne Ice Shelf in Antarctica. When a large piece of an ice shelf breaks off, this can lead to the formation of an iceberg. This process is also called ice calving.

<span class="mw-page-title-main">Filchner–Ronne Ice Shelf</span> Ice shelf in Antarctica

The Filchner–Ronne Ice Shelf, also known as Ronne–Filchner Ice Shelf, is an Antarctic ice shelf bordering the Weddell Sea.

<span class="mw-page-title-main">Antarctic ice sheet</span> Earths southern polar ice cap

The Antarctic ice sheet is one of two ice sheets on Earth and covers about 98% of the Antarctic continent. It is the largest single mass of ice on Earth, with an average thickness of over 2 kilometres (1.2 mi). It is distinct from the Antarctic sea ice. The Antarctic ice sheet covers an area of almost 14 million square kilometres and contains 26.5 million cubic kilometres of ice. The other ice sheet on Earth is the Greenland ice sheet.

<span class="mw-page-title-main">West Antarctica</span> Part of Antarctica that lies within the Western Hemisphere

West Antarctica, or Lesser Antarctica, one of the two major regions of Antarctica, is the part of that continent that lies within the Western Hemisphere, and includes the Antarctic Peninsula. It is separated from East Antarctica by the Transantarctic Mountains and is covered by the West Antarctic Ice Sheet. It lies between the Ross Sea, and the Weddell Sea. It may be considered a giant peninsula, stretching from the South Pole towards the tip of South America.

<span class="mw-page-title-main">Antarctic bottom water</span> Cold, dense, water mass originating in the Southern Ocean surrounding Antarctica

The Antarctic bottom water (AABW) is a type of water mass in the Southern Ocean surrounding Antarctica with temperatures ranging from −0.8 to 2 °C (35 °F) and absolute salinities from 34.6 to 35.0 g/kg. As the densest water mass of the oceans, AABW is found to occupy the depth range below 4000 m of all ocean basins that have a connection to the Southern Ocean at that level.

<span class="mw-page-title-main">Nordenskjöld Coast</span> Coast in Antarctica

The Nordenskjöld Coast is located on the Antarctic Peninsula, more specifically Graham Land, which is the top region of the Peninsula. The Peninsula is a thin, long ice sheet with an Alpine-style mountain chain. The coast consists of 15m tall ice cliffs with ice shelves.

<span class="mw-page-title-main">Second German Antarctic Expedition</span> Antarctic research expedition

The Second German Antarctic Expedition of 1911–1913 was led by Wilhelm Filchner in the exploration ship Deutschland. Its principal objective was to determine whether the Antarctic continent comprised a single landmass rather than separated elements, and in particular whether the Weddell Sea and Ross Sea were connected by a strait. In addition, an extensive programme of scientific research was undertaken. The expedition failed to establish a land base, and the ship became beset in the Weddell Sea ice, drifting north for eight months before reaching open water. The expedition was marred by considerable disagreement and animosity among its participants, and broke up in disarray.

<span class="mw-page-title-main">West Antarctic Rift System</span> Series of rift valleys between East and West Antarctica

The West Antarctic Rift System is a series of rift valleys between East and West Antarctica. It encompasses the Ross Embayment, the Ross Sea, the area under the Ross Ice Shelf and a part of Marie Byrd Land in West Antarctica, reaching to the base of the Antarctic Peninsula. It has an estimated length of 3,000 km (1,900 mi) and a width of approximately 700 km (430 mi). Its evolution is due to lithospheric thinning of an area of Antarctica that resulted in the demarcation of East and West Antarctica. The scale and evolution of the rift system has been compared to that of the Basin and Range Province of the Western United States.

The Tasman Outflow is a water pathway connecting water from the Pacific Ocean and the Indian Ocean. The existence of the outflow was published by scientists of the Australian CSIRO's Division of Marine and Atmospheric Research team in August 2007, interpreting salinity and temperature data captured from 1950 to 2002. The Tasman Outflow is seen as the missing link in the supergyre of the Southern Hemisphere and an important part of the thermohaline circulation.

<span class="mw-page-title-main">Weddell Gyre</span> One of two gyres within the Southern Ocean

The Weddell Gyre is one of the two gyres that exist within the Southern Ocean. The gyre is formed by interactions between the Antarctic Circumpolar Current (ACC) and the Antarctic Continental Shelf. The gyre is located in the Weddell Sea, and rotates clockwise. South of the ACC and spreading northeast from the Antarctic Peninsula, the gyre is an extended large cyclone. Where the northeastern end ends at 30°E, which is marked by the southward turn of the ACC, the northern part of the gyre spreads over the Southern Scotia Sea and goes northward to the South Sandwich Arc. Axis of the gyre is over the southern flanks of the South Scotia, America-Antarctic, and Southwest Indian Ridges. In the southern part of the gyre, the westward return flow is about 66 sverdrup (Sv), while in the northern rim current, there is an eastward flow of 61 Sv.

<span class="mw-page-title-main">Southern Ocean</span> Ocean around Antarctica

The Southern Ocean, also known as the Antarctic Ocean, comprises the southernmost waters of the world ocean, generally taken to be south of 60° S latitude and encircling Antarctica. With a size of 20,327,000 km2 (7,848,000 sq mi), it is regarded as the second-smallest of the five principal oceanic divisions: smaller than the Pacific, Atlantic, and Indian oceans but larger than the Arctic Ocean. Since the 1980s, the Southern Ocean has been subject to rapid climate change, which has led to changes in the marine ecosystem.

<span class="mw-page-title-main">International Weddell Sea Oceanographic Expeditions</span> Series of scientific research expeditions to the Weddell Sea

The International Weddell Sea Oceanographic Expeditions or IWSOE are a series of scientific research expeditions to the Weddell Sea began in 1967, involving cooperation among Norway, Canada, Chile and the United States.

Weddell Sea Bottom Water (WSBW) is a subset of Antarctic Bottom Water (AABW) that is at a temperature of -0.7 °C or colder. It consists of a higher salinity branch and a lower salinity branch. It originates in the Weddell Sea and closely follows the sea floor as it flows out into the rest of the world's oceans. It is created mainly due to the high surface winds blowing off the Antarctic continent which helps cool and oxygenate it. It flows at a rate of 2 to 5 Sv and contributes to the overall flow of the AABW.

<span class="mw-page-title-main">Iceberg A-38</span> Large iceberg that split from the Filchner-Ronne Ice Shelf in Antarctica in 1998

A-38 was a large iceberg that split from the Filchner-Ronne Ice Shelf in Antarctica in October 1998. Soon after formation it split into two pieces, A-38A and A-38B, which drifted westwards on the Weddell Gyre. The icebergs moved north along the Antarctic Peninsula and reached its tip in February 2003. A-38A and A-38B increased speed in open sea and grounded in shallower waters to the east of South Georgia Island in December 2003. A-38A broke up into three pieces in March 2004 and drifted north where it decayed. A-38B split into two in April, with the eastern portion, now known as A-38G, drifting north and west to decay. The remainder of A-38B remained grounded, interfering with the foraging routes of seals and penguins in South Georgia, resulting in the deaths of their young. On 20 August A38-B broke into two, with the new portion drifting north and breaking up. The remainder of A-38B continued to break up through September 2004 and had completely decayed by 2005.

<span class="mw-page-title-main">Northeast Georgia Rise</span> Oceanic plateau in the South Atlantic Ocean

The Northeast Georgia Rise is an oceanic plateau located in the South Atlantic Ocean northeast of South Georgia Island and west of the Falkland Plateau.

Filchner Station was a German research station in the Antarctic. Administered by the Alfred Wegener Institute for Polar and Marine Research, it was established in February 1982 on the Filchner–Ronne Ice Shelf. The first station in Antarctica to be mounted on jacks, the structure was raised each year to allow for the increase in height of the shelf by snowfall. It was also relocated around 1 kilometre (0.62 mi) southwards each year to account for drift of the ice shelf. In October 1998, Filchner Station was stranded on iceberg A-38 when it broke away from the ice shelf. Research operations were cancelled and an emergency salvage operation was carried out that removed the majority of the station by February 1999.

References

Notes

  1. "Weddell Sea". Encyclopædia Britannica.
  2. Retreat of glaciers since 1850 § Antarctica
  3. Gieskes, W. W. C.; Veth, C.; Woehrmann, A.; Graefe, M. (1987). "Secchi disc visibility world record shattered". Eos, Transactions American Geophysical Union. Eos. 68 (9): 123. Bibcode:1987EOSTr..68..123G. doi:10.1029/EO068i009p00123-01.
  4. Henry 1950.
  5. Smith 2004, p. 38.
  6. 1 2 "Weddell Sea – Highlights". Oceanwide Expeditions.
  7. "Endurance is Found" (Press release). Endurance22.org. Retrieved 14 March 2022.
  8. 1 2 Wilson, T. J. (1991). "Transition from back-arc to foreland basin development in the southernmost Andes: Stratigraphic record from the Ultima Esperanza District, Chile". Geological Society of America Bulletin. 103 (1): 98–111. Bibcode:1991GSAB..103...98W. doi:10.1130/0016-7606(1991)103<0098:tfbatf>2.3.co;2.
  9. 1 2 Ghiglione, M. C. (2016). "Orogenic Growth of the Fuegian Andes (52–56°) and Their Relation to Tectonics of the Scotia Arc". In Folguera, A.; et al. (eds.). Growth of the Southern Andes. Springer. pp. 241–267. ISBN   9783319230603.
  10. Strass, Volker H.; Rohardt, Gerd; Kanzow, Torsten; Hoppema, Mario; Boebel, Olaf (2020-11-15). "Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica". Journal of Climate. 33 (22): 9863–9881. Bibcode:2020JCli...33.9863S. doi: 10.1175/JCLI-D-20-0271.1 . ISSN   0894-8755. S2CID   221779070.
  11. Beckmann, Hellmer & Timmermann 1999.
  12. 1 2 Muench, Gordon & 1995.
  13. 1 2 Schwerdtfeger 1979.
  14. Griffiths, H.J.; Anker, P.; Linse, K.; Maxwell, J.; Post, A.L.; Stevens, C.; Tulaczyk, S. (15 February 2021). "Breaking all the rules: the first recorded hard substrate sessile benthic community far beneath an Antarctic ice shelf". Frontiers in Marine Science. 8: 76. doi: 10.3389/fmars.2021.642040 . ISSN   2296-7745.
  15. Katie Hunt (13 January 2022). "A colony of 60 million fish with transparent blood has been discovered in Antarctica". CNN. Retrieved 2022-01-13.
  16. Purser, Autun; Hehemann, Laura; Boehringer, Lilian; Tippenhauer, Sandra; Wege, Mia; Bornemann, Horst; Pineda-Metz, Santiago E.A.; Flintrop, Clara M.; Koch, Florian; Hellmer, Hartmut H.; Burkhardt-Holm, Patricia; Janout, Markus; Werner, Ellen; Glemser, Barbara; Balaguer, Jenna; Rogge, Andreas; Holtappels, Moritz; Wenzhoefer, Frank (February 2022). "A vast icefish breeding colony discovered in the Antarctic". Current Biology. 32 (4): 842–850.e4. doi: 10.1016/j.cub.2021.12.022 . hdl: 2263/90796 . ISSN   0960-9822. PMID   35030328.

Bibliography

75°S45°W / 75°S 45°W / -75; -45