Superocean

Last updated
The supercontinent Pangaea surrounded by the superocean Panthalassa. Pangaea.png
The supercontinent Pangaea surrounded by the superocean Panthalassa.

A superocean is an ocean that surrounds a supercontinent. It is less commonly defined as any ocean larger than the current Pacific Ocean. [1] Named global superoceans include Mirovia, which surrounded the supercontinent Rodinia, and Panthalassa, which surrounded the supercontinent Pangaea. Pannotia and Columbia, along with landmasses before Columbia (such as Ur and Kenorland), were also surrounded by superoceans.

Contents

As surface water moves unobstructed east to west in superoceans, it tends to warm from the exposure to sunlight so that the western edge of the ocean is warmer than the eastern. Additionally, seasonal changes in temperature, which would have been significantly more rapid inland, probably caused powerful monsoons. In general, however, the mechanics of superoceans are not well understood. [2]

List of superoceans

Possible future superoceans

See also

Related Research Articles

The PaleozoicEra is the first of three geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic and ends 251.9 Ma at the start of the Mesozoic Era. The Paleozoic is subdivided into six geologic periods :

<span class="mw-page-title-main">Supercontinent</span> Landmass comprising more than one continental core, or craton

In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent.

Rodinia was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named "Pangaea I." It was renamed "Rodinia" by McMenamin & McMenamin 1990 who also were the first to produce a reconstruction and propose a temporal framework for the supercontinent.

<span class="mw-page-title-main">Laurasia</span> Northern landmass that formed part of the Pangaea supercontinent

Laurasia was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around 335 to 175 million years ago (Mya), the other being Gondwana. It separated from Gondwana 215 to 175 Mya during the breakup of Pangaea, drifting farther north after the split and finally broke apart with the opening of the North Atlantic Ocean c. 56 Mya. The name is a portmanteau of Laurentia and Asia.

<span class="mw-page-title-main">Panthalassa</span> Prehistoric superocean that surrounded Pangaea

Panthalassa, also known as the Panthalassic Ocean or Panthalassan Ocean, was the vast superocean that encompassed planet Earth and surrounded the supercontinent Pangaea, the latest in a series of supercontinents in the history of Earth. During the Paleozoic–Mesozoic transition, the ocean occupied almost 70% of Earth's surface, with the supercontinent Pangaea taking up less than half. The original, ancient ocean floor has now completely disappeared because of the continuous subduction along the continental margins on its circumference. Panthalassa is also referred to as the Paleo-Pacific or Proto-Pacific because the Pacific Ocean is a direct continuation of Panthalassa.

<span class="mw-page-title-main">Arctica</span> Ancient continent in the Neoarchean era

Arctica, or Arctida is a hypothetical ancient continent which formed approximately 2.565 billion years ago in the Neoarchean era. It was made of Archaean cratons, including the Siberian Craton, with its Anabar/Aldan shields in Siberia, and the Slave, Wyoming, Superior, and North Atlantic cratons in North America. Arctica was named by Rogers 1996 because the Arctic Ocean formed by the separation of the North American and Siberian cratons. Russian geologists writing in English call the continent "Arctida" since it was given that name in 1987, alternatively the Hyperborean craton, in reference to the hyperboreans in Greek mythology.

<span class="mw-page-title-main">Pannotia</span> Hypothesized Neoproterozoic supercontinent

Pannotia, also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neoproterozoic supercontinent that formed at the end of the Precambrian during the Pan-African orogeny, during the Cryogenian period and broke apart 560 Ma with the opening of the Iapetus Ocean, in the late Ediacaran and early Cambrian. Pannotia formed when Laurentia was located adjacent to the two major South American cratons, Amazonia and Río de la Plata. The opening of the Iapetus Ocean separated Laurentia from Baltica, Amazonia, and Río de la Plata. A 2022 paper argues that Pannotia never fully existed, reinterpreting the geochronological evidence: "the supposed landmass had begun to break up well before it was fully assembled". However, the assembly of the next supercontinent Pangaea is well established.

<span class="mw-page-title-main">Supercontinent cycle</span> Repeated joining and separation of Earths continents

The supercontinent cycle is the quasi-periodic aggregation and dispersal of Earth's continental crust. There are varying opinions as to whether the amount of continental crust is increasing, decreasing, or staying about the same, but it is agreed that the Earth's crust is constantly being reconfigured. One complete supercontinent cycle is said to take 300 to 500 million years. Continental collision makes fewer and larger continents while rifting makes more and smaller continents.

Mirovia or Mirovoi was a hypothesized superocean which may have been a global ocean surrounding the supercontinent Rodinia in the Neoproterozoic Era, about 1 billion to 750 million years ago. Mirovia may be essentially identical to, or the precursor of, the hypothesized Pan-African Ocean, which followed the rifting of Rodinia. The Panthalassa (proto-Pacific) Ocean developed in the Neoproterozoic Era by subduction at the expense of the global Mirovia ocean.

The Pan-African Ocean is a hypothesized paleo-ocean whose closure created the supercontinent of Pannotia. The ocean may have existed before the break-up of the supercontinent of Rodinia. The ocean closed before the beginning of the Phanerozoic Eon, when the Panthalassa ocean expanded, and was eventually replaced by it.

<span class="mw-page-title-main">Geological history of Earth</span> The sequence of major geological events in Earths past

The geological history of the Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

<span class="mw-page-title-main">Ur (continent)</span> Hypothetical Archaean supercontinent from about 3.1 billion years ago

Ur is a hypothetical supercontinent that formed in the Archean eon around 3.1 billion years ago (Ga). In a reconstruction by Rogers, Ur is half a billion years older than Arctica and, in the early period of its existence, probably the only continent on Earth, making it a supercontinent despite probably being smaller than present-day Australia. In more recent works geologists often refer to both Ur and other proposed Archaean continental assemblages as supercratons. Ur can, nevertheless, be half a billion years younger than Vaalbara, but the concepts of these two early cratonic assemblages are incompatible.

<span class="mw-page-title-main">Laurentia</span> Craton forming the geological core of North America

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and the Hebridean Terrane in northwest Scotland. During other times in its past, Laurentia has been part of larger continents and supercontinents and consists of many smaller terranes assembled on a network of early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

<span class="mw-page-title-main">Pangaea</span> Supercontinent from the late Paleozoic to early Mesozoic eras

Pangaea or Pangea was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. In contrast to the present Earth and its distribution of continental mass, Pangaea was C-shaped, with the bulk of its mass stretching between Earth's northern and southern polar regions and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and the first to be reconstructed by geologists.

This is a list of articles related to plate tectonics and tectonic plates.

This timeline of natural history summarizes significant geological and biological events from the formation of the Earth to the arrival of modern humans. Times are listed in millions of years, or megaanni (Ma).

Forgotten continent may refer to:

<span class="mw-page-title-main">Terra Australis Orogen</span>

The Terra Australis Orogen (TAO) was a late Neoproterozoic- to Paleozoic-age accretionary orogen that ringed the ancient, active southern margin of the supercontinents Rodinia and later Pannotia. This vast orogenic belt stretched for c. 18,000 km (11,000 mi) along-strike and involved, from west to east, landmasses belonging to the modern-day Andean margin of South America, the South African Cape, West Antarctica, Victoria Land in East Antarctica, Eastern Australia, Tasmania, and New Zealand. The formation of the Terra Australis Orogen is associated with the breakup of Rodinia at the end of the Neoproterozoic Era and the creation of Panthalassa, the paleo-Pacific Ocean, and it was succeeded by the Gondwanide orogeny with the formation of the supercontinent Pangea in the middle Paleozoic Era.

A continent is a large geographical region defined by the continental shelves and the cultures on the continent. In the modern day, there are seven continents. However, there have been more continents throughout history. Vaalbara was the first supercontinent. Europe is the newest continent. Geologists have predicted that certain continents will appear, these being Pangaea Proxima, Novopangaea, Aurica, and Amasia.

References

  1. McMenamin, Mark A.S.; Schulte McMenamin, Dianna L. (1990). The Emergence of Animals: The Cambrian Breakthrough . Columbia University Press. ISBN   978-0-231-06647-1. LCCN   89035459.
  2. Martin, Ronald E. (1998). "Cycles and Secular Trends". One Long Experiment: Scale and Process in Earth History . Perspectives in Paleobiology and Earth History. Columbia University Press. ISBN   978-0-231-10905-5. LCCN   97027821.
  3. Davies, Hannah S.; Green, J. A. Mattias; Duarte, Joao C. (2020). "Back to the future II: Tidal evolution of four supercontinent scenarios". Earth System Dynamics. 11 (1): 291–299. Bibcode:2020ESD....11..291D. doi: 10.5194/esd-11-291-2020 . S2CID   216321175.