Pycnocline

Last updated
Pycnocline during stable stratification of deep water layers. The pycnocline is the transitory region between a surface layer of water (warmer and less dense) and deeper layer of water (colder and more dense). Mixing occurs across the pycnocline, driven primarily by waves and shear. Pycnocline illustrative drawing 03 13 22.jpg
Pycnocline during stable stratification of deep water layers. The pycnocline is the transitory region between a surface layer of water (warmer and less dense) and deeper layer of water (colder and more dense). Mixing occurs across the pycnocline, driven primarily by waves and shear.

A pycnocline is the cline or layer where the density gradient (ρ/z) is greatest within a body of water. An ocean current is generated by the forces such as breaking waves, temperature and salinity differences, wind, Coriolis effect, and tides caused by the gravitational pull of celestial bodies. In addition, the physical properties in a pycnocline driven by density gradients also affect the flows and vertical profiles in the ocean. These changes can be connected to the transport of heat, salt, and nutrients through the ocean, and the pycnocline diffusion controls upwelling. [1]

Contents

Below the mixed layer, a stable density gradient (or pycnocline) separates the upper and lower water, hindering vertical transport. [2] This separation has important biological effects on the ocean and the marine living organisms. However, vertical mixing across a pycnocline is a regular phenomenon in oceans, and occurs through shear-produced turbulence. [3] Such mixing plays a key role in the transport of nutrients. [4]

Physical function

Turbulent mixing produced by winds and waves transfers heat downward from the surface. In low and mid-latitudes, this creates a surface-mixed layer of water of almost uniform temperature which may be a few meters deep to several hundred meters deep. Below this mixed layer, at depths of 200–300 m in the open ocean, the temperature begins to decrease rapidly down to about 1000 m. The water layer within which the temperature gradient is steepest is known as the permanent thermocline. [5] The temperature difference through this layer may be as large as 20°C, depending on latitude. The permanent thermocline coincides with a change in water density between the warmer, low-density surface waters and the underlying cold dense bottom waters. The region of rapid density change is known as the pycnocline, and it acts as a barrier to vertical water circulation; thus it also affects the vertical distribution of certain chemicals which play a role in the biology of the seas. The sharp gradients in temperature and density also may act as a restriction to vertical movements of animals. [6]

Seasonality

While the general structure of a pycnocline explained above holds true, pycnoclines can change based on the season. In the winter, sea surface temperatures are cooler, and waves tend to be larger, which increases the depth of the mixed layer even down to the main thermocline/pycnocline in some cases. [7]

In the summer, warmer temperatures, melting sea and land ice, and increased sunlight cause the surface layer of the ocean to increase in temperature. This layer sits on top of the large winter mixed layer that was previously created and forms a seasonal pycnocline above the main pycnocline, with the winter mixed layer becoming a lower density gradient called a pycnostad. As the seasons begin to change again, a net loss of heat from the surface layer and continued wind mixing wear away the seasonal pycnocline until the next summer. [7]

Changes with Latitude

While temperature and salinity both have an impact on density, one can have a greater effect than the other depending on latitudinal region. In the tropics and mid-latitudes, the surface density for all oceans follows surface temperature rather than surface salinity. At the highest latitudes over 50°, surface density follows salinity more than temperature for all oceans because temperature consistently sites near the freezing point. [7]

In low and mid-latitudes, a permanent pycnocline exists at depths between 200-1000 m. In some large but geographically restricted subtropical regions such as the Sargasso Sea in the Atlantic, two permanent thermoclines exist with a layer of lower vertical stratification called a thermostad separating them. This phenomenon is reflected in density due to the strong dependence of density on ocean temperature; two permanent pycnoclines are associated with the permanent thermoclines, and the density equivalent to the thermostad is called the pycnostad. [7]

In subpolar and polar regions, the surface waters are much colder year-round due to latitude and much fresher due to the melting of sea and land ice, high precipitation, and freshwater runoff, while deeper waters are fairly consistent across the globe. Due to this, there is no permanent thermocline present, but seasonal thermoclines can occur. In these areas, a permanent halocline exists, and this halocline is the main factor in determining the permanent pycnocline. [7]

Biological function

Lion's manes and a moon jellyfish disturbing the pycnocline in the top water layer of Gullmarn fjord, Sweden. The top of the largest jellyfish is breaching the surface, while its tentacles are stirring up the thin pycnocline layer. Cnidaria disturbing the pycnocline in Gullmarn fjord at Samstad 3.jpg
Lion's manes and a moon jellyfish disturbing the pycnocline in the top water layer of Gullmarn fjord, Sweden. The top of the largest jellyfish is breaching the surface, while its tentacles are stirring up the thin pycnocline layer.

Growth rate of phytoplankton is controlled by the nutrient concentration, and the regeneration of nutrients in the sea is a very important part of the interaction between higher and lower trophic levels. The separation due to the pycnocline formation prevents the supply of nutrients from the lower layer into the upper layer. Nutrient fluxes through the pycnocline are lower than at other surface layers. [8]

Microbial loop

The microbial loop is a trophic pathway in the marine microbial food web. The term "microbial loop" was coined by Azam et al. (1983) to describe the role played by microbes in the marine ecosystem carbon and nutrient cycles where dissolved organic carbon (DOC) is returned to higher trophic levels via the incorporation into bacterial biomass, and also coupled with the classic food chain formed by phytoplankton-zooplankton-nekton.

At the end of phytoplankton bloom, when the algae enter a senescent stage, there is an accumulation of phytodetritus and an increased release of dissolved metabolites. It is particularly at this time that the bacteria can utilize these energy sources to multiply and produce a sharp pulse (or bloom) that follows the phytoplankton bloom. The same relationship between phytoplankton and bacteria influences the vertical distribution of bacterioplankton. Maximum numbers of bacteria generally occur at the pycnocline, where phytodetritus accumulates by sinking from the overlying euphotic zone. There, decomposition by bacteria contributes to the formation of oxygen minimum layers in stable waters. [9]

Diel vertical migration

One of the most characteristic behavioural features of plankton is a vertical migration that occurs with a 24-hour periodicity. This has often been referred to as diurnal or diel vertical migration. The vertical distance travelled over 24 hours varies, generally being greater among larger species and better swimmers. But even small copepods may migrate several hundred meters twice in a 24-hour period, and stronger swimmers like euphausiids and pelagic shrimp may travel 800 m or more. [10] The depth range of migration may be inhibited by the presence of a thermocline or pycnocline. However, phytoplankton and zooplankton capable of diel vertical migration are often concentrated in the pycnocline. [11] Furthermore, those marine organisms with swimming skills through thermocline or pycnocline may experience strong temperature and density gradients, as well as considerable pressure changes during the migration.

Stability

Pycnoclines become unstable when their Richardson number drops below 0.25. The Richardson number is a dimensionless value expressing the ratio of potential to kinetic energy. This ratio drops below 0.25 when the shear rate exceeds stratification. This can produce Kelvin-Helmholtz instability, resulting in a turbulence which leads to mixing. [12]

The changes in pycnocline depth or properties can be simulated from some computer program models. The simple approach for those models is to examine the Ekman pumping model based on the ocean general circulation model (OCGM). [13]

Types of clines

See also


Related Research Articles

<span class="mw-page-title-main">Downwelling</span> Process of accumulation and sinking of higher density material beneath lower density material

Downwelling is the downward movement of a fluid parcel and its properties within a larger fluid. It is closely related to upwelling, the upward movement of fluid.

<span class="mw-page-title-main">Physical oceanography</span> Study of physical conditions and processes within the ocean

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

The mesopelagiczone, also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at the depth where only 1% of incident light reaches and ends where there is no light; the depths of this zone are between approximately 200 to 1,000 meters below the ocean surface.

<span class="mw-page-title-main">Thermocline</span> Distinct layer of temperature change in a body of water

A thermocline is a distinct layer based on temperature within a large body of fluid with a high gradient of distinct temperature differences associated with depth. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.

<span class="mw-page-title-main">Spring bloom</span> Strong increase in phytoplankton abundance that typically occurs in the early spring

The spring bloom is a strong increase in phytoplankton abundance that typically occurs in the early spring and lasts until late spring or early summer. This seasonal event is characteristic of temperate North Atlantic, sub-polar, and coastal waters. Phytoplankton blooms occur when growth exceeds losses, however there is no universally accepted definition of the magnitude of change or the threshold of abundance that constitutes a bloom. The magnitude, spatial extent and duration of a bloom depends on a variety of abiotic and biotic factors. Abiotic factors include light availability, nutrients, temperature, and physical processes that influence light availability, and biotic factors include grazing, viral lysis, and phytoplankton physiology. The factors that lead to bloom initiation are still actively debated.

In oceanography, a halocline is a cline, a subtype of chemocline caused by a strong, vertical salinity gradient within a body of water. Because salinity affects the density of seawater, it can play a role in its vertical stratification. Increasing salinity by one kg/m3 results in an increase of seawater density of around 0.7 kg/m3.

Ocean stratification is the natural separation of an ocean's water into horizontal layers by density. This is generally stable stratification, because warm water floats on top of cold water, and heating is mostly from the sun, which reinforces that arrangement. Stratification is reduced by wind-forced mechanical mixing, but reinforced by convection. Stratification occurs in all ocean basins and also in other water bodies. Stratified layers are a barrier to the mixing of water, which impacts the exchange of heat, carbon, oxygen and other nutrients. The surface mixed layer is the uppermost layer in the ocean and is well mixed by mechanical (wind) and thermal (convection) effects. Climate change is causing the upper ocean stratification to increase.

<span class="mw-page-title-main">Mixed layer</span> Layer in which active turbulence has homogenized some range of depths

The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporation or sea ice formation which result in an increase in salinity. The atmospheric mixed layer is a zone having nearly constant potential temperature and specific humidity with height. The depth of the atmospheric mixed layer is known as the mixing height. Turbulence typically plays a role in the formation of fluid mixed layers.

<span class="mw-page-title-main">Thin layers (oceanography)</span> Congregations of plankton

Thin layers are concentrated aggregations of phytoplankton and zooplankton in coastal and offshore waters that are vertically compressed to thicknesses ranging from several centimeters up to a few meters and are horizontally extensive, sometimes for kilometers. Generally, thin layers have three basic criteria: 1) they must be horizontally and temporally persistent; 2) they must not exceed a critical threshold of vertical thickness; and 3) they must exceed a critical threshold of maximum concentration. The precise values for critical thresholds of thin layers has been debated for a long time due to the vast diversity of plankton, instrumentation, and environmental conditions. Thin layers have distinct biological, chemical, optical, and acoustical signatures which are difficult to measure with traditional sampling techniques such as nets and bottles. However, there has been a surge in studies of thin layers within the past two decades due to major advances in technology and instrumentation. Phytoplankton are often measured by optical instruments that can detect fluorescence such as LIDAR, and zooplankton are often measured by acoustic instruments that can detect acoustic backscattering such as ABS. These extraordinary concentrations of plankton have important implications for many aspects of marine ecology, as well as for ocean optics and acoustics. Zooplankton thin layers are often found slightly under phytoplankton layers because many feed on them. Thin layers occur in a wide variety of ocean environments, including estuaries, coastal shelves, fjords, bays, and the open ocean, and they are often associated with some form of vertical structure in the water column, such as pycnoclines, and in zones of reduced flow.

<span class="mw-page-title-main">Diel vertical migration</span> A pattern of daily vertical movement characteristic of many aquatic species

Diel vertical migration (DVM), also known as diurnal vertical migration, is a pattern of movement used by some organisms, such as copepods, living in the ocean and in lakes. The adjective "diel" comes from Latin: diēs, lit. 'day', and refers to a 24-hour period. The migration occurs when organisms move up to the uppermost layer of the water at night and return to the bottom of the daylight zone of the oceans or to the dense, bottom layer of lakes during the day. DVM is important to the functioning of deep-sea food webs and the biologically-driven sequestration of carbon.

The deep chlorophyll maximum (DCM), also called the subsurface chlorophyll maximum, is the region below the surface of water with the maximum concentration of chlorophyll. The DCM generally exists at the same depth as the nutricline, the region of the ocean where the greatest change in the nutrient concentration occurs with depth.

Ocean dynamics define and describe the flow of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean, and deep ocean.

<span class="mw-page-title-main">Cline (hydrology)</span> List of clines in hydrology

In hydrology and related studies, a cline is a comparatively thin, typically horizontal layer within a fluid, in which a property of the fluid varies greatly over a relatively short vertical distance.

<span class="mw-page-title-main">Barrier layer (oceanography)</span> Layer of water separating the well-mixed surface layer from the thermocline

The Barrier layer in the ocean is a layer of water separating the well-mixed surface layer from the thermocline.

In oceanography, a front is a boundary between two distinct water masses. The formation of fronts depends on multiple physical processes and small differences in these lead to a wide range of front types. They can be as narrow as a few hundreds of metres and as wide as several tens of kilometres. While most fronts form and dissipate relatively quickly, some can persist for long periods of time.

<span class="mw-page-title-main">Haida Eddies</span>

Haida Eddies are episodic, clockwise rotating ocean eddies that form during the winter off the west coast of British Columbia's Haida Gwaii and Alaska's Alexander Archipelago. These eddies are notable for their large size, persistence, and frequent recurrence. Rivers flowing off the North American continent supply the continental shelf in the Hecate Strait with warmer, fresher, and nutrient-enriched water. Haida eddies are formed every winter when this rapid outflow of water through the strait wraps around Cape St. James at the southern tip of Haida Gwaii, and meets with the cooler waters of the Alaska Current. This forms a series of plumes which can merge into large eddies that are shed into the northeast Pacific Ocean by late winter, and may persist for up to two years.

<span class="mw-page-title-main">Stratification (water)</span> Layering of a body of water due to density variations

Stratification in water is the formation in a body of water of relatively distinct and stable layers by density. It occurs in all water bodies where there is stable density variation with depth. Stratification is a barrier to the vertical mixing of water, which affects the exchange of heat, carbon, oxygen and nutrients. Wind-driven upwelling and downwelling of open water can induce mixing of different layers through the stratification, and force the rise of denser cold, nutrient-rich, or saline water and the sinking of lighter warm or fresher water, respectively. Layers are based on water density: denser water remains below less dense water in stable stratification in the absence of forced mixing.

<span class="mw-page-title-main">Atlantification of the Arctic</span>

Atlantification is the increasing influence of Atlantic water in the Arctic. Warmer and saltier Atlantic water is extending its reach northward into the Arctic Ocean. The Arctic Ocean is becoming warmer and saltier and sea-ice is disappearing as a result. The process can be seen on the figure on the far right, where the sea surface temperature change in the past 50 years is shown, which is up to 5 degrees in some places. This change in the Arctic climate is most prominent in the Barents Sea, a shallow shelf sea north of Scandinavia, where sea-ice is disappearing faster than in any other Arctic region, impacting the local and global ecosystem.

Thermohaline staircases are patterns that form in oceans and other bodies of salt water, characterised by step-like structures observed in vertical temperature and salinity profiles; the patterns are formed and maintained by double diffusion of heat and salt. The ocean phenomenon consists of well-mixed layers of ocean water stacked on top of each other. The well-mixed layers are separated by high-gradient interfaces, which can be several meters thick. The total thickness of staircases ranges typically from tens to hundreds of meters.

Eddy pumping is a component of mesoscale eddy-induced vertical motion in the ocean. It is a physical mechanism through which vertical motion is created from variations in an eddy's rotational strength. Cyclonic (Anticyclonic) eddies lead primarily to upwelling (downwelling). It is a key mechanism driving biological and biogeochemical processes in the ocean such as algal blooms and the carbon cycle.

References

  1. Anand Gnanadesikan. 1999. A simple predictive model for the structure of the oceanic pycnocline. Science 283 (5410): 2077–2079.
  2. Mann and Lazier (2006). Dynamics of marine ecosystems. 3rd edition. Blackwell Publishing. Chapter 3.
  3. Turbulent Mixing in Stratified Fluids, Annual Review of Fluid Mechanics (1991)
  4. Vertical Mixing and Transports through a Stratified Shear Layer, Journal of Physical Oceanography (2001)
  5. Knauss, John A. (1997). Introduction to Physical Oceanography. 2nd edition, Prentice-Hall. Chapter 1
  6. Lalli and Parson (1993). Biological oceanography: an introduction. Pergamon press. Chapter 2.
  7. 1 2 3 4 5 Talley, Lynne D.; Pickard, George L.; Emery, William J.; Swift, James H. (2011). Descriptive Physical Oceanography: An Introduction (6th ed.). Elservier. ISBN   978-0-7506-4552-2.
  8. Hales, B., Hebert, D., and Marra, J. 2009. Turbulent supply of nutrients to phytoplankton at the New England shelf break front. Journal of Geophysical Research. Vol. 114, C05010, doi : 10.1029/2008JC005011.
  9. Lalli and Parson (1993). Biological oceanography: an introduction. Pergamon press. Chapter 5.
  10. Lalli and Parson (1993). Biological oceanography: an introduction. Pergamon press. Chapter 4.
  11. Hill, A.E. 1998. Diel vertical migration in stratified tidal flows: Implications for plankton dispersal. Journal of Marine Research, Vol 56, pp. 1069-1096.
  12. Density Stratification, Turbulence, but How Much Mixing? Annual Review of Fluid Mechanics (2008)
  13. Capotondi, A., Alexander, M.A., Deser, C., and Miller, A. 2004. Low-frequency pycnocline variability in the Northeast Pacific. American Meteorological Society. Vol. 35, pp. 1403-1420.