Ecophysiology (from Greek οἶκος, oikos, "house(hold)"; φύσις, physis, "nature, origin"; and -λογία, -logia ), environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym. [1]
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one another), and how their collective effect on plant growth and gas exchange can be understood on this basis.[ citation needed ]
In many cases, animals are able to escape unfavourable and changing environmental factors such as heat, cold, drought or floods, while plants are unable to move away and therefore must endure the adverse conditions or perish (animals go places, plants grow places). Plants are therefore phenotypically plastic and have an impressive array of genes that aid in acclimating to changing conditions. It is hypothesized that this large number of genes can be partly explained by plant species' need to live in a wider range of conditions.
Light is the food of plants, i.e. the form of energy that plants use to build themselves and reproduce. The organs harvesting light in plants are leaves and the process through which light is converted into biomass is photosynthesis. The response of photosynthesis to light is called light response curve of net photosynthesis (PI curve). The shape is typically described by a non-rectangular hyperbola. Three quantities of the light response curve are particularly useful in characterising a plant's response to light intensities. The inclined asymptote has a positive slope representing the efficiency of light use, and is called quantum efficiency; the x-intercept is the light intensity at which biochemical assimilation (gross assimilation) balances leaf respiration so that the net CO2 exchange of the leaf is zero, called light compensation point; and a horizontal asymptote representing the maximum assimilation rate. Sometimes after reaching the maximum assimilation declines for processes collectively known as photoinhibition. [2]
As with most abiotic factors, light intensity (irradiance) can be both suboptimal and excessive. Suboptimal light (shade) typically occurs at the base of a plant canopy or in an understory environment. Shade tolerant plants have a range of adaptations to help them survive the altered quantity and quality of light typical of shade environments.
Excess light occurs at the top of canopies and on open ground when cloud cover is low and the sun's zenith angle is low, typically this occurs in the tropics and at high altitudes. Excess light incident on a leaf can result in photoinhibition and photodestruction. Plants adapted to high light environments have a range of adaptations to avoid or dissipate the excess light energy, as well as mechanisms that reduce the amount of injury caused. [3]
Light intensity is also an important component in determining the temperature of plant organs (energy budget). [4]
In response to extremes of temperature, plants can produce various proteins. These protect them from the damaging effects of ice formation and falling rates of enzyme catalysis at low temperatures, and from enzyme denaturation and increased photorespiration at high temperatures. As temperatures fall, production of antifreeze proteins and dehydrins increases. As temperatures rise, production of heat shock proteins increases. Metabolic imbalances associated with temperature extremes result in the build-up of reactive oxygen species, which can be countered by antioxidant systems. Cell membranes are also affected by changes in temperature and can cause the membrane to lose its fluid properties and become a gel in cold conditions or to become leaky in hot conditions. This can affect the movement of compounds across the membrane. To prevent these changes, plants can change the composition of their membranes. In cold conditions, more unsaturated fatty acids are placed in the membrane and in hot conditions, more saturated fatty acids are inserted.
Plants can avoid overheating by minimising the amount of sunlight absorbed and by enhancing the cooling effects of wind and transpiration. Plants can reduce light absorption using reflective leaf hairs, scales, and waxes. These features are so common in warm dry regions that these habitats can be seen to form a 'silvery landscape' as the light scatters off the canopies. [5] Some species, such as Macroptilium purpureum, can move their leaves throughout the day so that they are always orientated to avoid the sun ( paraheliotropism ). [6] Knowledge of these mechanisms has been key to breeding for heat stress tolerance in agricultural plants.[ citation needed ]
Plants can avoid the full impact of low temperatures by altering their microclimate. For example, Raoulia plants found in the uplands of New Zealand are said to resemble 'vegetable sheep' as they form tight cushion-like clumps to insulate the most vulnerable plant parts and shield them from cooling winds. The same principle has been applied in agriculture by using plastic mulch to insulate the growing points of crops in cool climates in order to boost plant growth. [7]
Too much or too little water can damage plants. If there is too little water then tissues will dehydrate and the plant may die. If the soil becomes waterlogged then the soil will become anoxic (low in oxygen), which can kill the roots of the plant. [8]
The ability of plants to access water depends on the structure of their roots and on the water potential of the root cells. When soil water content is low, plants can alter their water potential to maintain a flow of water into the roots and up to the leaves (Soil plant atmosphere continuum). This remarkable mechanism allows plants to lift water as high as 120 m by harnessing the gradient created by transpiration from the leaves. [9]
In very dry soil, plants close their stomata to reduce transpiration and prevent water loss. The closing of the stomata is often mediated by chemical signals from the root (i.e., abscisic acid). In irrigated fields, the fact that plants close their stomata in response to drying of the roots can be exploited to 'trick' plants into using less water without reducing yields (see partial rootzone drying). The use of this technique was largely developed by Dr Peter Dry and colleagues in Australia [10]
If drought continues, the plant tissues will dehydrate, resulting in a loss of turgor pressure that is visible as wilting. As well as closing their stomata, most plants can also respond to drought by altering their water potential (osmotic adjustment) and increasing root growth. Plants that are adapted to dry environments (Xerophytes) have a range of more specialized mechanisms to maintain water and/or protect tissues when desiccation occurs.
Waterlogging reduces the supply of oxygen to the roots and can kill a plant within days. Plants cannot avoid waterlogging, but many species overcome the lack of oxygen in the soil by transporting oxygen to the root from tissues that are not submerged. Species that are tolerant of waterlogging develop specialised roots near the soil surface and aerenchyma to allow the diffusion of oxygen from the shoot to the root. Roots that are not killed outright may also switch to less oxygen-hungry forms of cellular respiration. [11] Species that are frequently submerged have evolved more elaborate mechanisms that maintain root oxygen levels, such as the aerial roots seen in mangrove forests. [12]
However, for many terminally overwatered houseplants, the initial symptoms of waterlogging can resemble those due to drought. This is particularly true for flood-sensitive plants that show drooping of their leaves due to epinasty (rather than wilting).
CO2 is vital for plant growth, as it is the substrate for photosynthesis. Plants take in CO2 through stomatal pores on their leaves. At the same time as CO2 enters the stomata, moisture escapes. This trade-off between CO2 gain and water loss is central to plant productivity. The trade-off is all the more critical as Rubisco, the enzyme used to capture CO2, is efficient only when there is a high concentration of CO2 in the leaf. Some plants overcome this difficulty by concentrating CO2 within their leaves using C4 carbon fixation or Crassulacean acid metabolism. However, most species used C3 carbon fixation and must open their stomata to take in CO2 whenever photosynthesis is taking place.[ citation needed ]
The concentration of CO2 in the atmosphere is rising due to deforestation and the combustion of fossil fuels. This would be expected to increase the efficiency of photosynthesis and possibly increase the overall rate of plant growth. This possibility has attracted considerable interest in recent years, as an increased rate of plant growth could absorb some of the excess CO2 and reduce the rate of global warming. Extensive experiments growing plants under elevated CO2 using Free-Air Concentration Enrichment have shown that photosynthetic efficiency does indeed increase. Plant growth rates also increase, by an average of 17% for above-ground tissue and 30% for below-ground tissue. [13] [14] However, detrimental impacts of global warming, such as increased instances of heat and drought stress, mean that the overall effect is likely to be a reduction in plant productivity. [15] [16] [17] Reduced plant productivity would be expected to accelerate the rate of global warming. Overall, these observations point to the importance of avoiding further increases in atmospheric CO2 rather than risking runaway climate change. [18]
Wind has three very different effects on plants. [19]
Wind influences the way leaves regulate moisture, heat, and carbon dioxide. When no wind is present, a layer of still air builds up around each leaf. This is known as the boundary layer and in effect insulates the leaf from the environment, providing an atmosphere rich in moisture and less prone to convective heating or cooling. As wind speed increases, the leaf environment becomes more closely linked to the surrounding environment. It may become difficult for the plant to retain moisture as it is exposed to dry air. On the other hand, a moderately high wind allows the plant to cool its leaves more easily when exposed to full sunlight. Plants are not entirely passive in their interaction with wind. Plants can make their leaves less vulnerable to changes in wind speed, by coating their leaves in fine hairs (trichomes) to break up the airflow and increase the boundary layer. In fact, leaf and canopy dimensions are often finely controlled to manipulate the boundary layer depending on the prevailing environmental conditions. [21]
Plants can sense the wind through the deformation of its tissues. This signal leads to inhibits the elongation and stimulates the radial expansion of their shoots, while increasing the development of their root system. This syndrome of responses known as thigmomorphogenesis results in shorter, stockier plants with strengthened stems, as well as to an improved anchorage. [22] It was once believed that this occurs mostly in very windy areas. But it has been found that it happens even in areas with moderate winds, so that wind-induced signal were found to be a major ecological factor. [19] [23]
Trees have a particularly well-developed capacity to reinforce their trunks when exposed to wind. From the practical side, this realisation prompted arboriculturalists in the UK in the 1960s to move away from the practice of staking young amenity trees to offer artificial support. [24]
Wind can damage most of the organs of the plants. Leaf abrasion (due to the rubbing of leaves and branches or to the effect of airborne particles such as sand) and leaf of branch breakage are rather common phenomena, that plants have to accommodate. In the more extreme cases, plants can be mortally damaged or uprooted by wind. This has been a major selective pressure acting over terrestrial plants. [25] Nowadays, it is one of the major threatening for agriculture and forestry even in temperate zones. [19] It is worse for agriculture in hurricane-prone regions, such as the banana-growing Windward Islands in the Caribbean. [26]
When this type of disturbance occurs in natural systems, the only solution is to ensure that there is an adequate stock of seeds or seedlings to quickly take the place of the mature plants that have been lost- although, in many cases, a successional stage will be needed before the ecosystem can be restored to its former state.
The environment can have major influences on human physiology. Environmental effects on human physiology are numerous; one of the most carefully studied effects is the alterations in thermoregulation in the body due to outside stresses. This is necessary because in order for enzymes to function, blood to flow, and for various body organs to operate, temperature must remain at consistent, balanced levels.[ citation needed ]
To achieve this, the body alters three main things to achieve a constant, normal body temperature:
The hypothalamus plays an important role in thermoregulation. It connects to thermal receptors in the dermis, and detects changes in surrounding blood to make decisions of whether to stimulate internal heat production or to stimulate evaporation.
There are two main types of stresses that can be experienced due to extreme environmental temperatures: heat stress and cold stress.
Heat stress is physiologically combated in four ways: radiation, conduction, convection, and evaporation. Cold stress is physiologically combated by shivering, accumulation of body fat, circulatory adaptations (that provide an efficient transfer of heat to the epidermis), and increased blood flow to the extremities.
There is one part of the body fully equipped to deal with cold stress. The respiratory system protects itself against damage by warming the incoming air to 80-90 degrees Fahrenheit before it reaches the bronchi. This means that not even the most frigid of temperatures can damage the respiratory tract.
In both types of temperature-related stress, it is important to remain well-hydrated. Hydration reduces cardiovascular strain, enhances the ability of energy processes to occur, and reduces feelings of exhaustion.
Extreme temperatures are not the only obstacles that humans face. High altitudes also pose serious physiological challenges on the body. Some of these effects are reduced arterial , the rebalancing of the acid-base content in body fluids, increased hemoglobin, increased RBC synthesis, enhanced circulation, and increased levels of the glycolysis byproduct 2,3 diphosphoglycerate, which promotes off-loading of O2 by hemoglobin in the hypoxic tissues. [27]
Environmental factors can play a huge role in the human body's fight for homeostasis. However, humans have found ways to adapt, both physiologically and tangibly.[ citation needed ]
George A. Bartholomew (1919–2006) was a founder of animal physiological ecology. He served on the faculty at UCLA from 1947 to 1989, and almost 1,200 individuals can trace their academic lineages to him. [28] Knut Schmidt-Nielsen (1915–2007) was also an important contributor to this specific scientific field as well as comparative physiology. [29]
Hermann Rahn (1912–1990) was an early leader in the field of environmental physiology. Starting out in the field of zoology with a Ph.D. from University of Rochester (1933), Rahn began teaching physiology at the University of Rochester in 1941. It is there that he partnered with Wallace O. Fenn to publish A Graphical Analysis of the Respiratory Gas Exchange in 1955. This paper included the landmark O2-CO2 diagram, which formed the basis for much of Rahn's future work. Rahn's research into applications of this diagram led to the development of aerospace medicine and advancements in hyperbaric breathing and high-altitude respiration. Rahn later joined the University at Buffalo in 1956 as the Lawrence D. Bell Professor and Chairman of the Department of Physiology. As Chairman, Rahn surrounded himself with outstanding faculty and made the University an international research center in environmental physiology. [29]
Abiotic stress is the negative impact of non-living factors on the living organisms in a specific environment. The non-living variable must influence the environment beyond its normal range of variation to adversely affect the population performance or individual physiology of the organism in a significant way.
Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds like sugars, glycogen, cellulose and starches. To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.
In botany, a stoma, also called a stomate, is a pore found in the epidermis of leaves, stems, and other organs, that controls the rate of gas exchange between the internal air spaces of the leaf and the atmosphere. The pore is bordered by a pair of specialized parenchyma cells known as guard cells that regulate the size of the stomatal opening.
In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through chemosynthesis, which uses the oxidation or reduction of inorganic chemical compounds as its source of energy. Almost all life on Earth relies directly or indirectly on primary production. The organisms responsible for primary production are known as primary producers or autotrophs, and form the base of the food chain. In terrestrial ecoregions, these are mainly plants, while in aquatic ecoregions algae predominate in this role. Ecologists distinguish primary production as either net or gross, the former accounting for losses to processes such as cellular respiration, the latter not.
Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions that allows a plant to photosynthesize during the day, but only exchange gases at night. In a plant using full CAM, the stomata in the leaves remain shut during the day to reduce evapotranspiration, but they open at night to collect carbon dioxide and allow it to diffuse into the mesophyll cells. The CO2 is stored as four-carbon malic acid in vacuoles at night, and then in the daytime, the malate is transported to chloroplasts where it is converted back to CO2, which is then used during photosynthesis. The pre-collected CO2 is concentrated around the enzyme RuBisCO, increasing photosynthetic efficiency. This mechanism of acid metabolism was first discovered in plants of the family Crassulaceae.
Photorespiration (also known as the oxidative photosynthetic carbon cycle or C2 cycle) refers to a process in plant metabolism where the enzyme RuBisCO oxygenates RuBP, wasting some of the energy produced by photosynthesis. The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin–Benson cycle, but approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle. This process lowers the efficiency of photosynthesis, potentially lowering photosynthetic output by 25% in C3 plants. Photorespiration involves a complex network of enzyme reactions that exchange metabolites between chloroplasts, leaf peroxisomes and mitochondria.
Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants.
Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes that may or may not be permanent throughout an individual's lifespan.
The light compensation point (Ic) is the light intensity on the light curve where the rate of photosynthesis exactly matches the rate of cellular respiration. At this point, the uptake of CO2 through photosynthetic pathways is equal to the respiratory release of carbon dioxide, and the uptake of O2 by respiration is equal to the photosynthetic release of oxygen. The concept of compensation points in general may be applied to other photosynthetic variables, the most important being that of CO2 concentration – CO2 compensation point (Γ).Interval of time in day time when light intensity is low due to which net gaseous exchange is zero is called as compensation point.
Moisture stress is a form of abiotic stress that occurs when the moisture of plant tissues is reduced to suboptimal levels. Water stress occurs in response to atmospheric and soil water availability when the transpiration rate exceeds the rate of water uptake by the roots and cells lose turgor pressure. Moisture stress is described by two main metrics, water potential and water content.
Photoinhibition is light-induced reduction in the photosynthetic capacity of a plant, alga, or cyanobacterium. Photosystem II (PSII) is more sensitive to light than the rest of the photosynthetic machinery, and most researchers define the term as light-induced damage to PSII. In living organisms, photoinhibited PSII centres are continuously repaired via degradation and synthesis of the D1 protein of the photosynthetic reaction center of PSII. Photoinhibition is also used in a wider sense, as dynamic photoinhibition, to describe all reactions that decrease the efficiency of photosynthesis when plants are exposed to light.
Poikilohydry is the lack of ability to maintain and/or regulate water content to achieve homeostasis of cells and tissue connected with quick equilibration of cell/tissue water content to that of the environment. The term is derived from Ancient Greek ποικίλος.
A xerophyte is a species of plant that has adaptations to survive in an environment with little liquid water. Examples of xerophytes include cacti, pineapple and some gymnosperm plants. The morphology and physiology of xerophytes are adapted to conserve water during dry periods. Some species called resurrection plants can survive long periods of extreme dryness or desiccation of their tissues, during which their metabolic activity may effectively shut down. Plants with such morphological and physiological adaptations are said to be xeromorphic. Xerophytes such as cacti are capable of withstanding extended periods of dry conditions as they have deep-spreading roots and capacity to store water. Their waxy, thorny leaves prevent loss of moisture.
Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. It is a passive process that requires no energy expense by the plant. Transpiration also cools plants, changes osmotic pressure of cells, and enables mass flow of mineral nutrients. When water uptake by the roots is less than the water lost to the atmosphere by evaporation, plants close small pores called stomata to decrease water loss, which slows down nutrient uptake and decreases CO2 absorption from the atmosphere limiting metabolic processes, photosynthesis, and growth.
Photosynthesis systems are electronic scientific instruments designed for non-destructive measurement of photosynthetic rates in the field. Photosynthesis systems are commonly used in agronomic and environmental research, as well as studies of the global carbon cycle.
Chlorophyll fluorescence is light re-emitted by chlorophyll molecules during return from excited to non-excited states. It is used as an indicator of photosynthetic energy conversion in plants, algae and bacteria. Excited chlorophyll dissipates the absorbed light energy by driving photosynthesis, as heat in non-photochemical quenching or by emission as fluorescence radiation. As these processes are complementary processes, the analysis of chlorophyll fluorescence is an important tool in plant research with a wide spectrum of applications.
Plant stress measurement is the quantification of environmental effects on plant health. When plants are subjected to less than ideal growing conditions, they are considered to be under stress. Stress factors can affect growth, survival and crop yields. Plant stress research looks at the response of plants to limitations and excesses of the main abiotic factors, and of other stress factors that are important in particular situations. Plant stress measurement usually focuses on taking measurements from living plants. It can involve visual assessments of plant vitality, however, more recently the focus has moved to the use of instruments and protocols that reveal the response of particular processes within the plant
Stomatal conductance, usually measured in mmol m−2 s−1 by a porometer, estimates the rate of gas exchange and transpiration through the leaf stomata as determined by the degree of stomatal aperture.
Plant breeding is process of development of new cultivars. Plant breeding involves development of varieties for different environmental conditions – some of them are not favorable. Among them, heat stress is one of such factor that reduces the production and quality significantly. So breeding against heat is a very important criterion for breeding for current as well as future environments produced by global climate change.
Photosynthesis converts carbon dioxide to carbohydrates via several metabolic pathways that provide energy to an organism and preferentially react with certain stable isotopes of carbon. The selective enrichment of one stable isotope over another creates distinct isotopic fractionations that can be measured and correlated among oxygenic phototrophs. The degree of carbon isotope fractionation is influenced by several factors, including the metabolism, anatomy, growth rate, and environmental conditions of the organism. Understanding these variations in carbon fractionation across species is useful for biogeochemical studies, including the reconstruction of paleoecology, plant evolution, and the characterization of food chains.