Water potential

Last updated

Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension). The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil. Water potential is typically expressed in potential energy per unit volume and very often is represented by the Greek letter ψ.

Contents

Water potential integrates a variety of different potential drivers of water movement, which may operate in the same or different directions. Within complex biological systems, many potential factors may be operating simultaneously. For example, the addition of solutes lowers the potential (negative vector), while an increase in pressure increases the potential (positive vector). If the flow is not restricted, water will move from an area of higher water potential to an area that is lower potential. A common example is water with dissolved salts, such as seawater or the fluid in a living cell. These solutions have negative water potential, relative to the pure water reference. With no restriction on flow, water will move from the locus of greater potential (pure water) to the locus of lesser (the solution); flow proceeds until the difference in potential is equalized or balanced by another water potential factor, such as pressure or elevation.

Components of water potential

Many different factors may affect the total water potential, and the sum of these potentials determines the overall water potential and the direction of water flow:

[1]

where:

All of these factors are quantified as potential energies per unit volume, and different subsets of these terms may be used for particular applications (e.g., plants or soils). Different conditions are also defined as reference depending on the application: for example, in soils, the reference condition is typically defined as pure water at the soil surface.

Pressure potential

Pressure potential is based on mechanical pressure and is an important component of the total water potential within plant cells. Pressure potential increases as water enters a cell. As water passes through the cell wall and cell membrane, it increases the total amount of water present inside the cell, which exerts an outward pressure that is opposed by the structural rigidity of the cell wall. By creating this pressure, the plant can maintain turgor, which allows the plant to keep its rigidity. Without turgor, plants will lose structure and wilt.

The pressure potential in a plant cell is usually positive. In plasmolysed cells, pressure potential is almost zero. Negative pressure potentials occur when water is pulled through an open system such as a plant xylem vessel. Withstanding negative pressure potentials (frequently called tension) is an important adaptation of the xylem. This tension can be measured empirically using the Pressure bomb.

Osmotic potential (solute potential)

Pure water is usually defined as having an osmotic potential () of zero, and in this case, solute potential can never be positive. The relationship of solute concentration (in molarity) to solute potential is given by the van 't Hoff equation:

where is the concentration in molarity of the solute, is the van 't Hoff factor, the ratio of amount of particles in solution to amount of formula units dissolved, is the ideal gas constant, and is the absolute temperature.

The water diffuses across the osmotic membrane to where the water potential is lower Solute Potential.svg
The water diffuses across the osmotic membrane to where the water potential is lower

For example, when a solute is dissolved in water, water molecules are less likely to diffuse away via osmosis than when there is no solute. A solution will have a lower and hence more negative water potential than that of pure water. Furthermore, the more solute molecules present, the more negative the solute potential is.

Osmotic potential has important implications for many living organisms. If a living cell is surrounded by a more concentrated solution, the cell will tend to lose water to the more negative water potential () of the surrounding environment. This can be the case for marine organisms living in sea water and halophytic plants growing in saline environments. In the case of a plant cell, the flow of water out of the cell may eventually cause the plasma membrane to pull away from the cell wall, leading to plasmolysis. Most plants, however, have the ability to increase solute inside the cell to drive the flow of water into the cell and maintain turgor.

This effect can be used to power an osmotic power plant. [2]

A soil solution also experiences osmotic potential. The osmotic potential is made possible due to the presence of both inorganic and organic solutes in the soil solution. As water molecules increasingly clump around solute ions or molecules, the freedom of movement, and thus the potential energy, of the water is lowered. As the concentration of solutes is increased, the osmotic potential of the soil solution is reduced. Since water has a tendency to move toward lower energy levels, water will want to travel toward the zone of higher solute concentrations. Although, liquid water will only move in response to such differences in osmotic potential if a semipermeable membrane exists between the zones of high and low osmotic potential. A semipermeable membrane is necessary because it allows water through its membrane while preventing solutes from moving through its membrane. If no membrane is present, movement of the solute, rather than of the water, largely equalizes concentrations.

Since regions of soil are usually not divided by a semipermeable membrane, the osmotic potential typically has a negligible influence on the mass movement of water in soils. On the other hand, osmotic potential has an extreme influence on the rate of water uptake by plants. If soils are high in soluble salts, the osmotic potential is likely to be lower in the soil solution than in the plant root cells. In such cases, the soil solution would severely restrict the rate of water uptake by plants. In salty soils, the osmotic potential of soil water may be so low that the cells in young seedlings start to collapse (plasmolyze).

Matrix potential (Matric potential)

When water is in contact with solid particles (e.g., clay or sand particles within soil), adhesive intermolecular forces between the water and the solid can be large and important. The forces between the water molecules and the solid particles in combination with attraction among water molecules promote surface tension and the formation of menisci within the solid matrix. Force is then required to break these menisci. The magnitude of matrix potential depends on the distances between solid particles—the width of the menisci (also capillary action and differing Pa at ends of the capillary)—and the chemical composition of the solid matrix (meniscus, macroscopic motion due to ionic attraction).

In many cases, the absolute value of matrix potential can be relatively large in comparison to the other components of water potential discussed above. Matrix potential markedly reduces the energy state of water near particle surfaces. Although water movement due to matrix potential may be slow, it is still extremely important in supplying water to plant roots and in engineering applications. The matrix potential is always negative because the water attracted by the soil matrix has an energy state lower than that of pure water. Matrix potential only occurs in unsaturated soil above the water table. If the matrix potential approaches a value of zero, nearly all soil pores are completely filled with water, i.e. fully saturated and at maximum retentive capacity. The matrix potential can vary considerably among soils. In the case that water drains into less-moist soil zones of similar porosity, the matrix potential is generally in the range of −10 to −30 kPa.

Empirical examples

Soil-plant-air continuum

At a potential of 0 kPa, soil is in a state of saturation. At saturation, all soil pores are filled with water, and water typically drains from large pores by gravity. At a potential of −33 kPa, or −1/3 bar, (−10 kPa for sand), soil is at field capacity. Typically, at field capacity, air is in the macropores, and water in the micropores. Field capacity is viewed as the optimal condition for plant growth and microbial activity. At a potential of −1500 kPa, the soil is at its permanent wilting point, at which plant roots cannot extract the water through osmotic diffusion. Soil waterways still evaporate at more negative potentials down to a hygroscopic level, at which soil water is held by solid particles in a thin film by molecular adhesion forces.

In contrast, atmospheric water potentials are much more negative—a typical value for dry air is −100 MPa, though this value depends on the temperature and the humidity. Root water potential must be more negative than the soil, and the stem water potential must be an intermediate lower value than the roots but higher than the leaf water potential, to create a passive flow of water from the soil to the roots, up the stem, to the leaves and then into the atmosphere. [3] [4] [5]

Measurement techniques

A tensiometer, electrical resistance gypsum block, neutron probes, or time-domain reflectometry (TDR) can be used to determine soil water potential energy. Tensiometers are limited to 0 to −85 kPa, electrical resistance blocks are limited to −90 to −1500 kPa, neutron probes are limited to 0 to −1500 kPa, and a TDR is limited to 0 to −10,000 kPa. A scale can be used to estimate water weight (percentage composition) if special equipment is not on hand.

See also

Notes

  1. Taiz; Zeiger (2002). Plant Physiology (Fourth ed.). Sinauer Associates.
  2. "Statkraft to build world's first osmotic power plant". Archived from the original on 2009-02-27. Retrieved 2014-01-29.
  3. Beerling, D. J. (2015). "Gas valves, forests and global change: a commentary on Jarvis (1976) 'The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field'". Philosophical Transactions of the Royal Society B: Biological Sciences. 370 (1666): 20140311. doi:10.1098/rstb.2014.0311. ISSN   0962-8436. PMC   4360119 . PMID   25750234.
  4. Jarvis, P. G. (1976). "The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field". Philosophical Transactions of the Royal Society B: Biological Sciences. 273 (927): 593–610. Bibcode:1976RSPTB.273..593J. doi:10.1098/rstb.1976.0035. ISSN   0962-8436.
  5. Jones, Hamlyn G. (2013-12-12). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press. p. 93. ISBN   9781107511637.

Related Research Articles

<span class="mw-page-title-main">Molecular diffusion</span> Thermal motion of liquid or gas particles at temperatures above absolute zero

Molecular diffusion, often simply called diffusion, is the thermal motion of all particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the result of molecular diffusion is called a "dynamic equilibrium". In a phase with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.

<span class="mw-page-title-main">Osmotic pressure</span> Measure of the tendency of a solution to take in pure solvent by osmosis

Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in its pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane

<span class="mw-page-title-main">Plasmolysis</span> Process in which cells lose water in a hypertonic solution

Plasmolysis is the process in which cells lose water in a hypertonic solution. The reverse process, deplasmolysis or cytolysis, can occur if the cell is in a hypotonic solution resulting in a lower external osmotic pressure and a net flow of water into the cell. Through observation of plasmolysis and deplasmolysis, it is possible to determine the tonicity of the cell's environment as well as the rate solute molecules cross the cellular membrane.

<span class="mw-page-title-main">Semipermeable membrane</span> Membrane which will allow certain molecules or ions to pass through it by diffusion

Semipermeable membrane is a type of biological or synthetic, polymeric membrane that allows certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecules or solutes on either side, as well as the permeability of the membrane to each solute. Depending on the membrane and the solute, permeability may depend on solute size, solubility, properties, or chemistry. How the membrane is constructed to be selective in its permeability will determine the rate and the permeability. Many natural and synthetic materials which are rather thick are also semipermeable. One example of this is the thin film on the inside of an egg.

<span class="mw-page-title-main">Electro-osmosis</span> Movement of liquid through a conduit due to electric potential

In chemistry, electro-osmotic flow is the motion of liquid induced by an applied potential across a porous material, capillary tube, membrane, microchannel, or any other fluid conduit. Because electro-osmotic velocities are independent of conduit size, as long as the electrical double layer is much smaller than the characteristic length scale of the channel, electro-osmotic flow will have little effect. Electro-osmotic flow is most significant when in small channels, and is an essential component in chemical separation techniques, notably capillary electrophoresis. Electro-osmotic flow can occur in natural unfiltered water, as well as buffered solutions.

<span class="mw-page-title-main">Passive transport</span> Transport that does not require energy

Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. Instead of using cellular energy, like active transport, passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes. Fundamentally, substances follow Fick's first law, and move from an area of high concentration to an area of low concentration because this movement increases the entropy of the overall system. The rate of passive transport depends on the permeability of the cell membrane, which, in turn, depends on the organization and characteristics of the membrane lipids and proteins. The four main kinds of passive transport are simple diffusion, facilitated diffusion, filtration, and/or osmosis.

In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. The number ratio can be related to the various units for concentration of a solution such as molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions, which are solutions that exhibit thermodynamic properties analogous to those of an ideal gas, and is approximate for dilute real solutions. In other words, colligative properties are a set of solution properties that can be reasonably approximated by the assumption that the solution is ideal.

In cellular biology, membrane transport refers to the collection of mechanisms that regulate the passage of solutes such as ions and small molecules through biological membranes, which are lipid bilayers that contain proteins embedded in them. The regulation of passage through the membrane is due to selective membrane permeability – a characteristic of biological membranes which allows them to separate substances of distinct chemical nature. In other words, they can be permeable to certain substances but not to others.

<span class="mw-page-title-main">Forward osmosis</span> Water purification process

Forward osmosis (FO) is an osmotic process that, like reverse osmosis (RO), uses a semi-permeable membrane to effect separation of water from dissolved solutes. The driving force for this separation is an osmotic pressure gradient, such that a "draw" solution of high concentration, is used to induce a net flow of water through the membrane into the draw solution, thus effectively separating the feed water from its solutes. In contrast, the reverse osmosis process uses hydraulic pressure as the driving force for separation, which serves to counteract the osmotic pressure gradient that would otherwise favor water flux from the permeate to the feed. Hence significantly more energy is required for reverse osmosis compared to forward osmosis.

<span class="mw-page-title-main">Chemiosmosis</span> Electrochemical principle that enables cellular respiration

Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H+) across a membrane during cellular respiration or photosynthesis.

The Starling principle holds that extracellular fluid movements between blood and tissues are determined by differences in hydrostatic pressure and colloid osmotic (oncotic) pressure between plasma inside microvessels and interstitial fluid outside them. The Starling Equation, proposed many years after the death of Starling, describes that relationship in mathematical form and can be applied to many biological and non-biological semipermeable membranes. The classic Starling principle and the equation that describes it have in recent years been revised and extended.

<span class="mw-page-title-main">Tonicity</span> Measure of water potential across a semi-permeable cell membrane

In chemical biology, tonicity is a measure of the effective osmotic pressure gradient; the water potential of two solutions separated by a partially-permeable cell membrane. Tonicity depends on the relative concentration of selective membrane-impermeable solutes across a cell membrane which determine the direction and extent of osmotic flux. It is commonly used when describing the swelling-versus-shrinking response of cells immersed in an external solution.

<span class="mw-page-title-main">Osmotic concentration</span> Molarity of osmotically active particles

Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution. The osmolarity of a solution is usually expressed as Osm/L, in the same way that the molarity of a solution is expressed as "M". Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of osmoles of solute particles per unit volume of solution. This value allows the measurement of the osmotic pressure of a solution and the determination of how the solvent will diffuse across a semipermeable membrane (osmosis) separating two solutions of different osmotic concentration.

Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall.

Reverse osmosis (RO) is a water purification process that uses a semi-permeable membrane to separate water molecules from other substances. RO applies pressure to overcome osmotic pressure that favors even distributions. RO can remove dissolved or suspended chemical species as well as biological substances, and is used in industrial processes and the production of potable water. RO retains the solute on the pressurized side of the membrane and the purified solvent passes to the other side. It relies on the relative sizes of the various molecules to decide what passes through. "Selective" membranes reject large molecules, while accepting smaller molecules.

<span class="mw-page-title-main">Osmosis</span> Chemical process

Osmosis is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential to a region of low water potential, in the direction that tends to equalize the solute concentrations on the two sides. It may also be used to describe a physical process in which any solvent moves across a selectively permeable membrane separating two solutions of different concentrations. Osmosis can be made to do work. Osmotic pressure is defined as the external pressure required to be applied so that there is no net movement of solvent across the membrane. Osmotic pressure is a colligative property, meaning that the osmotic pressure depends on the molar concentration of the solute but not on its identity.

Bacterial adhesion involves the attachment of bacteria on the surface. This interaction plays an important role in natural system as well as in environmental engineering. The attachment of biomass on the membrane surface will result in membrane fouling, which can significantly reduce the efficiency of the treatment system using membrane filtration process in wastewater treatment plants. The low adhesion of bacteria to soil is essential key for the success of in-situ bioremediation in groundwater treatment. However, the contamination of pathogens in drinking water could be linked to the transportation of microorganisms in groundwater and other water sources. Controlling and preventing the adverse impact of the bacterial deposition on the aquatic environment need a deeply understanding about the mechanisms of this process. DLVO theory has been used extensively to describe the deposition of bacteria in many current researches.

In ecology, pressure-volume curves describe the relationship between total water potential (Ψt) and relative water content (R) of living organisms. These values are widely used in research on plant-water relations, and provide valuable information on the turgor, osmotic and elastic properties of plant tissues.

A depletion force is an effective attractive force that arises between large colloidal particles that are suspended in a dilute solution of depletants, which are smaller solutes that are preferentially excluded from the vicinity of the large particles. One of the earliest reports of depletion forces that lead to particle coagulation is that of Bondy, who observed the separation or "creaming" of rubber latex upon addition of polymer depletant molecules to solution. More generally, depletants can include polymers, micelles, osmolytes, ink, mud, or paint dispersed in a continuous phase.

<span class="mw-page-title-main">Membrane osmometer</span>

A membrane osmometer is a device used to indirectly measure the number average molecular weight of a polymer sample. One chamber contains pure solvent and the other chamber contains a solution in which the solute is a polymer with an unknown . The osmotic pressure of the solvent across the semipermeable membrane is measured by the membrane osmometer. This osmotic pressure measurement is used to calculate for the sample.