Ferrochrome

Last updated
Ferrochrome alloy Ferrochrome.JPG
Ferrochrome alloy

Ferrochrome or ferrochromium (FeCr) is a type of ferroalloy, that is, an alloy of chromium and iron, generally containing 50 to 70% chromium by weight. [1] [2]

Contents

Ferrochrome is produced by electric arc carbothermic reduction of chromite. Most of the global output is produced in South Africa, Kazakhstan and India, which have large domestic chromite resources. Increasing amounts are coming from Russia and China. Production of steel, especially that of stainless steel with chromium content of 10 to 20%, is the largest consumer and the main application of ferrochrome.

Usage

Over 80% of the world's ferrochrome is utilised in the production of stainless steel. In 2006, 28,000,000 tons of stainless steel were produced. [3] [4] Stainless steel depends on chromium for its appearance and resistance to corrosion. Average chrome content in stainless steel is approx. 18%. It is also used to add chromium to carbon steel. FeCr from South Africa, known as "charge chrome" and produced from a Cr containing ore with a low carbon content, is most commonly used in stainless steel production. Alternatively, high carbon FeCr produced from high-grade ore found in Kazakhstan (among other places) is more commonly used in specialist applications such as engineering steels where a high Cr/Fe ratio and minimum levels of other elements (sulfur, phosphorus, titanium etc.) are important and production of finished metals takes place in small electric arc furnaces compared to large scale blast furnaces.[ citation needed ] In the past, Ferrochrome alloys were used in the formulation of Type III Compact Cassettes.

Production

Ferrochrome production is essentially a carbothermic reduction operation taking place at high temperatures. Chromite (an oxide of Cr and Fe) is reduced by coal and coke to form the iron-chromium alloy. The heat for this reaction can come from several forms, but typically from the electric arc formed between the tips of electrodes in the bottom of the furnace and the furnace hearth. This arc creates temperatures of about 2,800 °C (5,070 °F). In the process of smelting, huge amounts of electricity are consumed, making production very expensive in countries where power costs are high.

Tapping of the material from the furnace takes place intermittently. When enough smelted ferrochrome has accumulated in the furnace hearth, the tap hole is drilled open and a stream of molten metal and slag rushes down a trough into a chill or ladle. Ferrochrome solidifies in large castings which are crushed for sale or further processed.

Ferrochrome is generally classified by the amount of carbon and chrome it contains. The vast majority of FeCr produced is "charge chrome" from South Africa, with high carbon being the second largest segment followed by the smaller sectors of low carbon and intermediate carbon material.

Trading

In March 2021, the Shanghai Futures Exchange decided that it would list ferrochrome futures at some unknown date. At the time, ferrochrome spot 6–8% C, basis 50% Cr, ddp China was trading at $1,336–1,382. In January 2021 the spot price had been 25% lower. [5]

Related Research Articles

<span class="mw-page-title-main">Chromium</span> Chemical element, symbol Cr and atomic number 24

Chromium is a chemical element; it has symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel, also known as inox, corrosion-resistant steel (CRES) and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains at least 10.5% chromium and usually nickel, as well as 0.2 to 2.11% carbon. Stainless steel's resistance to corrosion results from the chromium, which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">Steelmaking</span> Process for producing steel from iron ore and scrap

Steelmaking is the process of producing steel from iron ore and/or scrap. In steelmaking, impurities such as nitrogen, silicon, phosphorus, sulfur and excess carbon are removed from the sourced iron, and alloying elements such as manganese, nickel, chromium, carbon and vanadium are added to produce different grades of steel.

<span class="mw-page-title-main">Chromite</span> Crystalline mineral

Chromite is a crystalline mineral composed primarily of iron(II) oxide and chromium(III) oxide compounds. It can be represented by the chemical formula of FeCr2O4. It is an oxide mineral belonging to the spinel group. The element magnesium can substitute for iron in variable amounts as it forms a solid solution with magnesiochromite (MgCr2O4). A substitution of the element aluminium can also occur, leading to hercynite (FeAl2O4). Chromite today is mined particularly to make stainless steel through the production of ferrochrome (FeCr), which is an iron-chromium alloy.

Chrome may refer to:

<span class="mw-page-title-main">Ferromanganese</span> Alloy of manganese and iron

Ferromanganese is an alloy of iron and manganese, with other elements such as silicon, carbon, sulfur, nitrogen and phosphorus. The primary use of ferromanganese is as a type of processed manganese source to add to different types of steel, such as stainless steel. Global production of low-carbon ferromanganese reached 1.5 megatons in 2010.

Ferroalloy refers to various alloys of iron with a high proportion of one or more other elements such as manganese (Mn), aluminium (Al), or silicon (Si). They are used in the production of steels and alloys. The alloys impart distinctive qualities to steel and cast iron or serve important functions during production and are, therefore, closely associated with the iron and steel industry, the leading consumer of ferroalloys. The leading producers of ferroalloys in 2014 were China, South Africa, India, Russia and Kazakhstan, which accounted for 84% of the world production. World production of ferroalloys was estimated as 52.8 million tonnes in 2015.

<span class="mw-page-title-main">Ferrosilicon</span>

Ferrosilicon is an alloy of iron and silicon with a typical silicon content by weight of 15–90%. It contains a high proportion of iron silicides.

<span class="mw-page-title-main">SAE steel grades</span> Standard alloy numbering system for steel grades

The SAE steel grades system is a standard alloy numbering system for steel grades maintained by SAE International.

Byasanagar or Vyasanagar is a town and a municipality in Jajapur district in the state of Odisha, India. Colloquially it is also called Jajpur Road. It is home to an industrial belt and hosts several steel companies including Neelachal Ispat Nigam Limited, MESCO, Tata Steel, Jindal Steel etc. According to district officials there are around 14 major companies and several small companies in the vicinity. The city is also home to some eminent people in Odisha, including P. C. Ghadei, Late Ashok Das, Ram Chandra Khuntia (Congress) ,political leader Giridhari Barik (BJD),Priti Ranjan Ghadei (MLA), actor Akash Dasnayak, and his actress aunt the veteran Ms. Anita Dash, actress Naina Das with several other leaders and eminent personalities, its come under the Korei vidhan shabha

<span class="mw-page-title-main">Ferro Alloys Corporation</span>

The Ferro Alloys Corporation Limited (FACOR) was floated in 1955 by the house of Sarafs and Mors to become the first major producer of ferromanganese in India.

<span class="mw-page-title-main">Ferrotitanium</span> Alloy of titanium and iron

Ferrotitanium is a ferroalloy, an alloy of iron and titanium with between 10 and 20% iron and 45–75% titanium and sometimes a small amount of carbon. It is used in steelmaking as a cleansing agent for iron and steel; the titanium is highly reactive with sulfur, carbon, oxygen, and nitrogen, forming insoluble compounds and sequestering them in slag, and is therefore used for deoxidizing, and sometimes for desulfurization and denitrogenation. In steelmaking, the addition of titanium yields metal with finer grain structure. Ferrotitanium can be manufactured by mixing titanium sponge and scrap with iron and melting them together in an induction furnace. Ferrotitanium powder can be also used as a fuel in some pyrotechnic compositions.

Ferroniobium is an important iron-niobium alloy, with a niobium content of 60-70%. It is the main source for niobium alloying of HSLA steel and covers more than 80% of the worldwide niobium production. The niobium is mined from pyrochlore deposits and is subsequently transformed into the niobium pentoxide Nb2O5. This oxide is mixed with iron oxide and aluminium and is reduced in an aluminothermic reaction to niobium and iron. The component metals can be purified in an electron beam furnace or the alloy can be used as it is. For alloying with steel the ferroniobium is added to molten steel before casting. The largest producers of ferroniobium are the same as for niobium and are located in Brazil and Canada.

Ferro molybdenum is an important iron-molybdenum metal alloy, with a molybdenum content of 60–75% It is the main source for molybdenum alloying of HSLA steel.

<span class="mw-page-title-main">Kemi mine</span>

The Kemi Mine is owned by Outokumpu Chrome Oy, a subsidiary of Outokumpu Oyj. It is located in Elijärvi, in the municipality of Keminmaa, to the north of Kemi. The Kemi Mine is the largest underground mine in Finland, with an annual production capacity of 2.7 million tonnes of ore. It is also part of the integrated ferrochrome and stainless steel manufacturing chain owned by Outokumpu in the Kemi-Tornio region. The Kemi Mine has approximately 400 employees every day, both employees of Outokumpu and contractors.

<span class="mw-page-title-main">AlbChrome</span>

AlbChrome is an Albanian-based private company founded in 1948. The company is the largest producer of chrome in the country and among the leading producers of ferrochrome in the world.

Ferroboron (FeB) is a ferroalloy consisting of iron and boron. The metal usually contains 17.5% to 20% boron and is used to produce boron steels.

<span class="mw-page-title-main">Ferritic stainless steel</span> High chromium, low carbon stainless steel type

Ferritic stainless steel forms one of the five stainless steel families, the other four being austenitic, martensitic, duplex stainless steels, and precipitation hardened. For example, many of AISI 400-series of stainless steels are ferritic steels. By comparison with austenitic types, these are less hardenable by cold working, less weldable, and should not be used at cryogenic temperatures. Some types, like the 430, have excellent corrosion resistance and are very heat tolerant.

<span class="mw-page-title-main">Jugokrom</span>

Chemico-Electrometallurgical Combine "Jugokrom" was one of the largest combines in the industry of Macedonia. During the period of 1985–1988, it had approximately 7,000 employees, and prior to its closure in November 2016, it had around 1,000 employees.

References

  1. "ASTM A482".
  2. "Ferrochromium -- Specification and conditions of delivery - ISO 5448:1981".
  3. Jorgenson, John D.; Corathers, Lisa A.; Gambogi, Joseph; Kuck, Peter H.; Magyar, Michael J.; Papp, John F.; Shedd; Kim B. "Mineral Yearbook 2006: Ferroalloys" (PDF). United States Geological Survey. Retrieved 2009-02-27.
  4. Lisa A. Corathers; Joseph Gambogi; Peter H. Kuck; John F. Papp; Désirée E. Polyak; Kim B. Shedd. "Mineral Yearbook 2009: Ferroalloys" (PDF). United States Geological Survey. Retrieved 2011-11-22.
  5. Stibbs, Jon; Liu, Siyi (23 March 2021). "COMMENT: Could China's ferro-chrome futures be a game-changer?". Euromoney Institutional Investor. Fastmarkets.