Rift zone

Last updated
East Rift Zone on Kilauea, Hawai`i East rift zone kilauea.jpg
East Rift Zone on Kīlauea, Hawaiʻi

A rift zone is a feature of some volcanoes, especially shield volcanoes, in which a set of linear cracks (or rifts) develops in a volcanic edifice, typically forming into two or three well-defined regions along the flanks of the vent. [1] Believed to be primarily caused by internal and gravitational stresses generated by magma emplacement within and across various regions of the volcano, rift zones allow the intrusion of magmatic dykes into the slopes of the volcano itself. The addition of these magmatic materials usually contributes to the further rifting of the slope, in addition to generating fissure eruptions from those dykes that reach the surface. It is the grouping of these fissures, and the dykes that feed them, that serves to delineate where and whether a rift zone is to be defined. [2] The accumulated lava of repeated eruptions from rift zones along with the endogenous growth created by magma intrusions causes these volcanoes to have an elongated shape. [3] Perhaps the best example of this is Mauna Loa, which in Hawaiian means "long mountain", [4] and which features two very well defined rift zones extending tens of kilometers outward from the central vent.

Contents

Formation

Rift zones are characterized by the close grouping of intrusive dykes and extrusive fissures extending outward along a relatively narrow band from the area of a central vent. The internal extensional forces and isostatic loading generated by intruding magma volumes (either associated with the magma chamber or subsequent dyke and sill formation extending outward from that chamber), in conjunction with accumulation of erupted materials, contribute to the mass and slope of the forming edifice. It is the weight of the edifice exceeding its material strength, with the additional stresses of the magma inflating the internal regions of the edifice, that can generate the initial cracking around a developing volcanic summit. [2] Additionally, tectonic activity such as normal faulting is also commonly associated with formation of rifts along volcanic flanks. [2] [5] Following the path of least resistance, subsequent magmatic dykes form along and within these initial cracks, causing additional stresses to be imparted to the local materials of the edifice, which in turn generate new rifts for the magma to flow towards. [1] [6] In this way, established rift zones can potentially be self-sustaining geologic features along the flanks of the given volcanic vent. The orientation of this rifting is largely dependent on the gravitational and tectonic stresses at play. [7] Basaltic shield volcanoes typically feature two main rift zones, situated with angles of 120° between in ideal situations. [1] [3] On shield volcanoes forming from level seafloor without neighboring vents, flank rifting occurs more evenly distributed around the vent. [1] However, where the flanks of a volcano may be supported on one side by the presence of a pre-existing feature, or burdened with various planes of weakness, rift zone formation promulgates according to down-slope pull of gravity.

Structure

The infill of magmas in the form of dykes helps to define the shape of a volcano. A higher frequency of intrusive events along rift zones leads to elongated topographies of the affected edifices. [6] Mathematical models show how the presence of rift zones contributes to a central horizontal bulge or ridge parallel to the orientation of the rifts. [3] This same modelling shows how this central bulge is dependent on the ratio between rift zone length and depth of the magma sources, with longer fissures over shallower sources being more positively associated with very elongated topographies of the associated flanks. [3] Occasionally, fissure eruptions associated with rift zones can actually evolve into new vents along the volcanic edifice, generating lava flows lasting for months or longer. [1] These lava flows add surface materials to the slopes of the volcano, extending the slopes outward in a general flattening of the morphology of the flank. [6] The extensional character of these events can contribute to flank instability and mass wasting events where whole sections of the volcanic edifice can collapse along rift zone boundaries. [5] These mass wasting events can affect the dyke formations and orientations as the mass of the edifice shifts, which can have profound impacts on the structural development of the edifice, [5] while also potentially creating many volcanic hazards, such as tsunamis and dramatic shifts in directions of lava flows, to unsuspecting communities.

Volcanologist George P.L. Walker stated that rift zones were common in most volcanoes around the world, regardless of their type and formation. [2] Walker put forward the idea that, absent any obvious signs of rifting on the surface, the presence of other volcanic features that are also associated with dyke intrusions (such as elongated cinder cones and linearly-aligned fissure vents) should also be taken to represent the presence of a rift zone-like processes in the given region. [2] Therefore, rift zones of various lengths and widths can be tentatively identified on many stratovolcanoes and monogenetic lava fields in addition to classic Hawaiian shield volcanoes.

Examples

See also

Related Research Articles

<span class="mw-page-title-main">Mauna Loa</span> Volcano in Hawaii, United States

Mauna Loa is one of five volcanoes that form the Island of Hawaii in the U.S. state of Hawaii in the Pacific Ocean. Mauna Loa is Earth's largest active volcano by both mass and volume. It was historically considered to be the largest volcano on Earth until Tamu Massif was discovered to be larger. Mauna Loa is a shield volcano with relatively gentle slopes, and a volume estimated at 18,000 cubic miles (75,000 km3), although its peak is about 125 feet (38 m) lower than that of its neighbor, Mauna Kea. Lava eruptions from Mauna Loa are silica-poor and very fluid, and tend to be non-explosive.

<span class="mw-page-title-main">Shield volcano</span> Low-profile volcano usually formed almost entirely of fluid lava flows

A shield volcano is a type of volcano named for its low profile, resembling a shield lying on the ground. It is formed by the eruption of highly fluid lava, which travels farther and forms thinner flows than the more viscous lava erupted from a stratovolcano. Repeated eruptions result in the steady accumulation of broad sheets of lava, building up the shield volcano's distinctive form.

<span class="mw-page-title-main">Kīlauea</span> Active volcano in Hawaii

Kīlauea is an active shield volcano in the Hawaiian Islands. Located along the southeastern shore of Hawai'i Island, the volcano is between 210,000 and 280,000 years old and emerged above sea level about 100,000 years ago. Historically, it is the most active of the five volcanoes that together form the island of Hawaii. Kīlauea is also one of the most active volcanoes on Earth, with the most recent eruption occurring for a week in September 2023 when multiple vents erupted lava within the volcano's summit caldera inside Halemaʻumaʻu crater.

<span class="mw-page-title-main">Hualālai</span> Active volcano in the Hawaiian Islands

Hualālai is an active volcano on the island of Hawaiʻi in the Hawaiian Islands. It is the westernmost, third-youngest and the third-most active of the five volcanoes that form the island of Hawaiʻi, following Kīlauea and the much larger Mauna Loa. Its peak stands 8,271 feet (2,521 m) above sea level. Hualālai is estimated to have risen above sea level about 300,000 years ago. Despite maintaining a very low level of activity since its last eruption in 1801, and being unusually inactive for the last 2,000 years, Hualālai is still considered active, and is expected to erupt again sometime in the next 100 years. The relative unpreparedness of the residents in the area caused by the lull in activity would worsen an eruption's consequences.

<span class="mw-page-title-main">Dike (geology)</span> A sheet of rock that is formed in a fracture of a pre-existing rock body

In geology, a dike or dyke is a sheet of rock that is formed in a fracture of a pre-existing rock body. Dikes can be either magmatic or sedimentary in origin. Magmatic dikes form when magma flows into a crack then solidifies as a sheet intrusion, either cutting across layers of rock or through a contiguous mass of rock. Clastic dikes are formed when sediment fills a pre-existing crack.

<span class="mw-page-title-main">Porak</span> Volcano on the border between Armenia and Azerbaijan

Porak or Akharbakhar is a stratovolcano located in the Vardenis volcanic ridge. It lies about 20 km (12 mi) southeast of Lake Sevan and the volcanic field spans the border between Armenia and Azerbaijan with lava flows running into both countries. Ten satellite cones and fissure vents lie on the flanks of the volcano.

<span class="mw-page-title-main">Hilina Slump</span> Subsided section of the Big Island of Hawaii

The Hilina Slump, on the south flank of the Kīlauea Volcano on the southeast coast of the Big Island of Hawaiʻi, is the most notable of several landslides that ring each of the Hawaiian Islands. These landslides are the means by which material deposited at a volcano's vents are transferred downward and seaward, eventually spilling onto the seabed to broaden the island.

<span class="mw-page-title-main">Hawaiian eruption</span> Effusive volcanic eruption

A Hawaiian eruption is a type of volcanic eruption where lava flows from the vent in a relatively gentle, low level eruption; it is so named because it is characteristic of Hawaiian volcanoes. Typically they are effusive eruptions, with basaltic magmas of low viscosity, low content of gases, and high temperature at the vent. Very small amounts of volcanic ash are produced. This type of eruption occurs most often at hotspot volcanoes such as Kīlauea on Hawaii's big island and in Iceland, though it can occur near subduction zones and rift zones. Hawaiian eruptions may occur along fissure vents, such as during the eruption of Mauna Loa in 1950, or at a central vent, such as during the 1959 eruption in Kīlauea Iki Crater, which created a lava fountain 580 meters (1,900 ft) high and formed a 38-meter cone named Puʻu Puaʻi. In fissure-type eruptions, lava spurts from a fissure on the volcano's rift zone and feeds lava streams that flow downslope. In central-vent eruptions, a fountain of lava can spurt to a height of 300 meters or more.

<span class="mw-page-title-main">Quetrupillán</span> Mountain in Chile

Quetrupillán is a stratovolcano located in Los Ríos Region of Chile. It is situated between Villarrica and Lanín volcanoes, within Villarrica National Park. Geologically, Quetrupillán is located in a tectonic basement block between the main traces of Liquiñe-Ofqui Fault and Reigolil-Pirihueico Fault.

<span class="mw-page-title-main">Types of volcanic eruptions</span> Overview of different types of volcanic eruptions

Several types of volcanic eruptions—during which lava, tephra, and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

<span class="mw-page-title-main">Ollagüe</span> Stratovolcano in Bolivia and Chile

Ollagüe or Ullawi is a massive andesite stratovolcano in the Andes on the border between Bolivia and Chile, within the Antofagasta Region of Chile and the Potosi Department of Bolivia. Part of the Central Volcanic Zone of the Andes, its highest summit is 5,868 metres (19,252 ft) above sea level and features a summit crater that opens to the south. The western rim of the summit crater is formed by a compound of lava domes, the youngest of which features a vigorous fumarole that is visible from afar.

<span class="mw-page-title-main">Cerro del Azufre</span> Mountain in Chile

Cerro del Azufre is a stratovolcano located in El Loa Province, Antofagasta Region, Chile. It is part of a chain of volcanoes that separate Upper Loa River basin from Salar de Ascotán basin and is flanked to the west by a dacitic lava dome called Chanka or Pabellón. The 6000 metre volcanoes San Pedro and San Pablo are located to the southwest of Cerro del Azufre.

<span class="mw-page-title-main">Flank eruption</span> Type of volcanic eruption

A flank eruption is a volcanic eruption which occurs on the flanks of a volcano, instead of at its summit. Such eruptions occur when the conduit connecting the summit to the magma chamber below is blocked, forcing the magma to move laterally.

<span class="mw-page-title-main">Littoral cone</span>

Littoral cones are a form of volcanic cone. They form from the interaction between lava flows and water. Steam explosions fragment the lava and the fragments can pile up and form a cone. Such cones usually form on ʻaʻā lava flows, and typically are formed only by large lava flows. They have been found on Hawaii and elsewhere.

<span class="mw-page-title-main">Lastarria</span> Stratovolcano on the border between Chile and Argentina

Lastarria is a 5,697 metres (18,691 ft) high stratovolcano that lies on the border between Chile and Argentina. It is remote, and the surroundings are uninhabited but can be reached through an unpaved road. The volcano is part of the Central Volcanic Zone, one of the four segments of the volcanic arc of the Andes. Over a thousand volcanoes—of which about 50 are active—lie in this over 1,500 kilometres (930 mi) long chain of volcanoes, which is generated by subduction of the Nazca Plate beneath the South American Plate.

<span class="mw-page-title-main">1984 eruption of Mauna Loa</span>

The 1984 eruption of Mauna Loa was a Hawaiian eruption in the U.S. state of Hawaii that lasted from March 25 to April 15, 1984. It ended a 9-year period of quiescence at the volcano and continued for 22 days, during which time lava flows and lava fountains issued from the summit caldera and fissures along the northeast and southwest rift zones. Although the lava threatened Hilo, the flow stopped before reaching the outskirts of town.

<span class="mw-page-title-main">1975 eruption of Mauna Loa</span> 1975 volcanic eruption

The 1975 eruption of Mauna Loa was a short-lived Hawaiian eruption that followed 25 years of quiescence at the Hawaiian volcano Mauna Loa. The eruption began just before midnight on July 5 and involved fissures extending across the length of Moku‘āweoweo, Mauna Loa's summit caldera, and into the upper ends of the volcano's northeast and southwest rift zones. After only 6 hours, activity in Moku‘āweoweo and on the southwest rift zone ended, but lava fountaining continued along the northeast rift zone until 7:30 p.m. on July 6, when all activity ceased.

<span class="mw-page-title-main">Rauðhólar (Vesturdalur)</span>

Rauðhólar (Vesturdalur) is a small chain of volcanoes within the Askja or the Fremrinámur volcanic systems in the north of Iceland.

<span class="mw-page-title-main">Geology of Reykjanes Peninsula</span> Volcanic area of Iceland

The Reykjanes Peninsula in southwest Iceland is the continuation of the mostly submarine Reykjanes Ridge, a part of the Mid-Atlantic Ridge, on land and reaching from Esja in the north and Hengill in the east to Reykjanestá in the west. Suðurnes is an administrative unit covering part of Reykjanes Peninsula.

<span class="mw-page-title-main">Ōkataina Caldera</span> Volcanic caldera in New Zealand

Ōkataina Caldera is a volcanic caldera and its associated volcanoes located in Taupō Volcanic Zone of New Zealand's North Island. It has several actual or postulated sub calderas. The Ōkataina Caldera is just east of the smaller Rotorua Caldera and southwest of the much smaller Rotomā Embayment which is usually regarded as an associated volcano. It shows high rates of explosive rhyolitic volcanism although its last eruption was basaltic. The postulated Haroharo Caldera contained within it has sometimes been described in almost interchangeable terms with the Ōkataina Caldera or volcanic complex or centre and by other authors as a separate complex defined by gravitational and magnetic features.. Since 2010 other terms such as the Haroharo vent alignment, Utu Caldera, Matahina Caldera, Rotoiti Caldera and a postulated Kawerau Caldera are often used, rather than a Haroharo Caldera classification.

References

  1. 1 2 3 4 5 W., Hazlett, Richard (2010-05-17). Volcanoes : global perspectives. Wiley-Blackwell. ISBN   9781405162500. OCLC   892899076.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 3 4 5 Walker, George P. L. (1999-12-01). "Volcanic rift zones and their intrusion swarms". Journal of Volcanology and Geothermal Research. 94 (1–4): 21–34. Bibcode:1999JVGR...94...21W. doi:10.1016/S0377-0273(99)00096-7.
  3. 1 2 3 4 Annen, C.; Lénat, J. -F.; Provost, A. (2001-03-01). "The long-term growth of volcanic edifices: numerical modelling of the role of dyke intrusion and lava-flow emplacement". Journal of Volcanology and Geothermal Research. 105 (4): 263–289. Bibcode:2001JVGR..105..263A. doi:10.1016/S0377-0273(00)00257-2.
  4. ""Mauna Loa: Earth's Largest Volcano". USGS. 2 February 2006. Retrieved 21 October 2015".
  5. 1 2 3 Walter, T. R.; Troll, V. R.; Cailleau, B.; Belousov, A.; Schmincke, H.-U.; Amelung, F.; Bogaard, P. v d (2005-04-01). "Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands" (PDF). Bulletin of Volcanology. 67 (4): 281–291. Bibcode:2005BVol...67..281W. doi:10.1007/s00445-004-0352-z. ISSN   0258-8900. S2CID   130290027.
  6. 1 2 3 Michon, Laurent; Cayol, Valérie; Letourneur, Ludovic; Peltier, Aline; Villeneuve, Nicolas; Staudacher, Thomas (2009-07-01). "Edifice growth, deformation and rift zone development in basaltic setting: Insights from Piton de la Fournaise shield volcano (Réunion Island)" (PDF). Journal of Volcanology and Geothermal Research. Recent advances on the geodynamics of Piton de la Fournaise volcano. 184 (1–2): 14–30. Bibcode:2009JVGR..184...14M. doi:10.1016/j.jvolgeores.2008.11.002.
  7. Walter, Thomas R.; Troll, Valentin R. (September 2003). "Experiments on rift zone evolution in unstable volcanic edifices". Journal of Volcanology and Geothermal Research. 127 (1–2): 107–120. Bibcode:2003JVGR..127..107W. doi:10.1016/S0377-0273(03)00181-1.