Stratovolcano

Last updated

Mount Rainier, a 4,392 m (14,411 ft) stratovolcano, the highest point in the US state of Washington Rainier20200906.jpg
Mount Rainier, a 4,392 m (14,411 ft) stratovolcano, the highest point in the US state of Washington
Exposed internal structure of alternating layers of lava and pyroclastic rock in the eroded Broken Top stratovolcano in Oregon Broken Top rock layers.jpg
Exposed internal structure of alternating layers of lava and pyroclastic rock in the eroded Broken Top stratovolcano in Oregon

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. [1] Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica (as in rhyolite, dacite, or andesite), with lesser amounts of less viscous mafic magma. [2] Extensive felsic lava flows are uncommon, but have traveled as far as 15 km (9 mi). [3]

Contents

Stratovolcanoes are sometimes called composite volcanoes because of their composite stratified structure, built up from sequential outpourings of erupted materials. They are among the most common types of volcanoes, in contrast to the less common shield volcanoes. [4] Two examples of stratovolcanoes famous for catastrophic eruptions are Krakatoa in Indonesia, which erupted in 1883, and Vesuvius in Italy, having erupted in 79; both eruptions claimed thousands of lives. In modern times, Mount St. Helens in Washington State, US, and Mount Pinatubo in the Philippines have erupted catastrophically, but with fewer deaths.

The existence of stratovolcanoes on other bodies of the Solar System has not been conclusively demonstrated. [5] One possible exception is the existence of some isolated massifs on Mars, for example the Zephyria Tholus. [6]

Creation

Cross-section of subduction zone and associated stratovolcanoes Subduction-en.svg
Cross-section of subduction zone and associated stratovolcanoes

Stratovolcanoes are common at subduction zones, forming chains and clusters along plate tectonic boundaries where oceanic crust is drawn under continental crust (continental arc volcanism, e.g. Cascade Range, Andes, Campania) or another oceanic plate (island arc volcanism, e.g. Japan, Philippines, Aleutian Islands). The magma forming stratovolcanoes rises when water trapped both in hydrated minerals and in the porous basalt rock of the upper oceanic crust is released into mantle rock of the asthenosphere above the sinking oceanic slab. [7] The release of water from hydrated minerals is termed "dewatering", and occurs at specific pressures and temperatures for each mineral, as the plate descends to greater depths. [8] The water freed from the rock lowers the melting point of the overlying mantle rock, which then undergoes partial melting, rises (due to its lighter density relative to the surrounding mantle rock), and pools temporarily at the base of the lithosphere. The magma then rises through the crust, incorporating silica-rich crustal rock, leading to a final intermediate composition. When the magma nears the top surface, it pools in a magma chamber within the crust below the stratovolcano. [7]

The processes that trigger the final eruption remain a question for further research. Possible mechanisms include: [9] [10]

These internal triggers may be modified by external triggers such as sector collapse, earthquakes, or interactions with groundwater. Some of these triggers operate only under limited conditions. For example, sector collapse (where part of the flank of a volcano collapses in a massive landslide) can trigger eruption only of a very shallow magma chamber. Magma differentiation and thermal expansion also are ineffective as triggers for eruptions from deep magma chambers. [14]

Hazards

Mount Etna on the island of Sicily, in southern Italy Etna from 2900m.jpg
Mount Etna on the island of Sicily, in southern Italy
Mt.Fuji from misaka pass 2.jpg
Fugendake 04.JPG
Mount Fuji on Honshu (top) and Mount Unzen on Kyushu (bottom), two of Japan's stratovolcanoes

In recorded history, explosive eruptions at subduction zone (convergent-boundary) volcanoes have posed the greatest hazard to civilizations. [15] Subduction-zone stratovolcanoes, such as Mount St. Helens, Mount Etna and Mount Pinatubo, typically erupt with explosive force because the magma is too viscous to allow easy escape of volcanic gases. As a consequence, the tremendous internal pressures of the trapped volcanic gases remain and intermingle in the pasty magma. Following the breaching of the vent and the opening of the crater, the magma degasses explosively. The magma and gases blast out with high speed and full force. [15]

Since 1600 CE, nearly 300,000 people have been killed by volcanic eruptions. [15] Most deaths were caused by pyroclastic flows and lahars, deadly hazards that often accompany explosive eruptions of subduction-zone stratovolcanoes. Pyroclastic flows are swift, avalanche-like, ground-sweeping, incandescent mixtures of hot volcanic debris, fine ash, fragmented lava, and superheated gases that can travel at speeds over 160 km/h (100 mph). Around 30,000 people were killed by pyroclastic flows during the 1902 eruption of Mount Pelée on the island of Martinique in the Caribbean. [15] During March and April of 1982, three explosive eruptions of El Chichón in the State of Chiapas in southeastern Mexico caused the worst volcanic disaster in that country's history. Villages within 8 km (5 mi) of the volcano were destroyed by pyroclastic flows, killing more than 2,000 people. [15]

Two Decade Volcanoes that erupted in 1991 provide examples of stratovolcano hazards. On June 15, Mount Pinatubo spewed an ash cloud 40 km (25 mi) into the air and produced huge pyroclastic surges and lahar floods that devastated a large area around the volcano. Pinatubo, located in Central Luzon just 90 km (56 mi) west-northwest of Manila, had been dormant for six centuries before the 1991 eruption, which ranks as one of the largest eruptions in the 20th century. [15] Also in 1991, Japan's Unzen Volcano, located on the island of Kyushu about 40 km (25 mi) east of Nagasaki, awakened from its 200-year slumber to produce a new lava dome at its summit. Beginning in June, the repeated collapse of this erupting dome generated ash flows that swept down the mountain's slopes at speeds as high as 200 km/h (120 mph). Unzen is one of more than 75 active volcanoes in Japan; an eruption in 1792 killed more than 15,000 people—the worst volcanic disaster in the nation's history. [15]

The eruption of Mount Vesuvius in 79 completely smothered the nearby ancient cities of Pompeii and Herculaneum with thick deposits of pyroclastic surges and lava flows. Although the death toll has been estimated at between 13,000 and 26,000 people, the exact number is still unclear. Vesuvius is recognized as one of the most dangerous of the world's volcanoes, due to its capacity for powerful explosive eruptions coupled with the high population density of the surrounding Metropolitan Naples area (totaling about 3.6 million inhabitants).[ citation needed ]

Ash

Snow-like blanket of Mount Pinatubo's ashfall deposits in a parking lot on Clark Air Base (June 15, 1991) Ashfall from Pinatubo, 1991.jpg
Snow-like blanket of Mount Pinatubo's ashfall deposits in a parking lot on Clark Air Base (June 15, 1991)

In addition to potentially affecting the climate, volcanic clouds from explosive eruptions pose a serious hazard to aviation. [15] For example, during the 1982 eruption of Galunggung in Java, British Airways Flight 9 flew into the ash cloud, causing it to sustain temporary engine failure and structural damage. During the past two decades, more than 60 airplanes, mostly commercial airliners, have been damaged by in-flight encounters with volcanic ash. Some of these encounters have resulted in the loss of power in all engines, necessitating emergency landings. As of 1999, no crashes have happened because of jet aircraft flying into volcanic ash. [15] Ashfalls are a threat to health when inhaled and ash is also a threat to property with enough accumulation. An accumulation of 30 cm (12 in) is sufficient to cause most buildings to collapse.[ citation needed ] Dense clouds of hot volcanic ash can be expelled due to the collapse of an eruptive column, or laterally due to the partial collapse of a volcanic edifice or lava dome during explosive eruptions. These clouds can generate devastating pyroclastic flows or surges, which can sweep up everything in their paths.[ citation needed ]

Lava

Mayon Volcano in Philippines extruding lava flows during its eruption on December 29, 2009 Mayon 0052.jpg
Mayon Volcano in Philippines extruding lava flows during its eruption on December 29, 2009

Lava flows from stratovolcanoes are generally not a significant threat to humans or animals because the highly viscous lava moves slowly enough for everyone to flee away from the path of flow. The lava flows are more of a threat to property. However, not all stratovolcanoes erupt viscous and sticky lava. Nyiragongo, near Lake Kivu in central Africa, is very dangerous because its magma has an unusually low silica content, making it quite fluid. Fluid lavas are typically associated with the formation of broad shield volcanoes such as those of Hawaii, but Nyiragongo has very steep slopes down which lava can flow at up to 100 km/h (60 mph). Lava flows could melt down ice and glaciers that accumulated on the volcano's crater and upper slopes, generating massive lahar flows. Rarely, generally fluid lava could also generate massive lava fountains, while lava of thicker viscosity can solidify within the vent, creating a volcanic plug which can result in highly explosive eruptions.[ citation needed ]

Volcanic bombs

Volcanic bombs are extrusive igneous rocks ranging from the size of books to small cars, that are explosively ejected from stratovolcanoes during their climactic eruptive phases. These "bombs" can travel over 20 km (12 mi) away from the volcano, and present a risk to buildings and living beings while shooting at very high speeds (hundreds of kilometers/miles per hour) through the air. Most bombs do not themselves explode on impact, but rather carry enough force to have destructive effects as if they exploded.[ citation needed ]

Lahar

Lahars (from a Javanese term for volcanic mudflows) are mixtures of volcanic debris and water. Lahars usually come from two sources: rainfall or the melting of snow and ice by hot volcanic elements, such as lava. Depending on the proportion and temperature of water to volcanic material, lahars can range from thick, gooey flows that have the consistency of wet concrete to fast-flowing, soupy floods. [15] As lahars flood down the steep sides of stratovolcanoes, they have the strength and speed to flatten or drown everything in their paths. Hot ash clouds, lava flows and pyroclastic surges ejected during 1985 eruption of Nevado del Ruiz in Colombia melted snow and ice atop the 5,321 m (17,457 ft) high Andean volcano. The ensuing lahar flooded the city of Armero and nearby settlements, killing 25,000 people. [15]

Effects on climate and atmosphere

Paluweh eruption as seen from space Paluweh2013labeled.jpg
Paluweh eruption as seen from space

As per the above examples, while the Unzen eruptions have caused deaths and considerable local damage in the historic past, the impact of the June 1991 eruption of Mount Pinatubo was global. Slightly cooler-than-usual temperatures were recorded worldwide, with brilliant sunsets and intense sunrises attributed to the particulates; this eruption lofted particles high into the stratosphere. The aerosols that formed from the sulfur dioxide (SO2), carbon dioxide (CO2), and other gases dispersed around the world. The SO2 mass in this cloud—about 22 million tons—combined with water (both of volcanic and atmospheric origin) formed droplets of sulfuric acid, blocking a portion of the sunlight from reaching the troposphere and ground. The cooling in some regions is thought to have been as much as 0.5 °C (0.9 °F). [15] An eruption the size of Mount Pinatubo tends to affect the weather for a few years; the material injected into the stratosphere gradually drops into the troposphere, where it is washed away by rain and cloud precipitation.[ citation needed ]

A similar but extraordinarily more powerful phenomenon occurred in the cataclysmic April 1815 eruption of Mount Tambora on Sumbawa island in Indonesia. The Mount Tambora eruption is recognized as the most powerful eruption in recorded history. Its eruption cloud lowered global temperatures by as much as 3.5 °C (6.3 °F). [15] In the year following the eruption, most of the Northern Hemisphere experienced sharply cooler temperatures during the summer. In parts of Europe, Asia, Africa, and North America, 1816 was known as the "Year Without a Summer", which caused a considerable agricultural crisis and a brief but bitter famine, which generated a series of distresses across much of the affected continents.[ citation needed ]

List

See also

Related Research Articles

<span class="mw-page-title-main">Volcano</span> Rupture in the crust of a planet that allows lava, ash, and gases to escape from below the surface

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

<span class="mw-page-title-main">Ring of Fire</span> Region around the rim of the Pacific Ocean where many volcanic eruptions and earthquakes occur

The Ring of Fire is a tectonic belt, about 40,000 km (25,000 mi) long and up to about 500 km (310 mi) wide, which circumscribes the Pacific Ocean. It contains between 750 and 915 volcanoes, around two-thirds of the world total, and 90% of the world's earthquakes, including 81% of its largest, take place within the belt.

<span class="mw-page-title-main">Volcanic cone</span> Landform of ejecta from a volcanic vent piled up in a conical shape

Volcanic cones are among the simplest volcanic landforms. They are built by ejecta from a volcanic vent, piling up around the vent in the shape of a cone with a central crater. Volcanic cones are of different types, depending upon the nature and size of the fragments ejected during the eruption. Types of volcanic cones include stratocones, spatter cones, tuff cones, and cinder cones.

<span class="mw-page-title-main">Geology of the Lassen volcanic area</span> Geology of a U.S. national park in California

The Lassen volcanic area presents a geological record of sedimentation and volcanic activity in and around Lassen Volcanic National Park in Northern California, U.S. The park is located in the southernmost part of the Cascade Mountain Range in the Pacific Northwest region of the United States. Pacific Oceanic tectonic plates have plunged below the North American Plate in this part of North America for hundreds of millions of years. Heat and molten rock from these subducting plates has fed scores of volcanoes in California, Oregon, Washington and British Columbia over at least the past 30 million years, including these in the Lassen volcanic areas.

<span class="mw-page-title-main">Mount Pinatubo</span> Active stratovolcano in the Philippines

Mount Pinatubo is an active stratovolcano in the Zambales Mountains, located on the tripoint boundary of the Philippine provinces of Zambales, Tarlac and Pampanga, all in Central Luzon on the northern island of Luzon. Its eruptive history was unknown to most before the pre-eruption volcanic activity of early 1991. Pinatubo was heavily eroded and obscured from view by dense forests which supported a population of several thousand indigenous Aetas.

<span class="mw-page-title-main">Mount Unzen</span> Group of volcanoes in Nagasaki Prefecture, Japan

Mount Unzen is an active volcanic group of several overlapping stratovolcanoes, near the city of Shimabara, Nagasaki on the island of Kyushu, Japan's southernmost main island.

<span class="mw-page-title-main">Santa María (volcano)</span> Active volcano in Quetzaltenango Department, Guatemala

Santa María Volcano is a large active volcano in the western highlands of Guatemala, in the Quetzaltenango Department near the city of Quetzaltenango.

<span class="mw-page-title-main">Lava dome</span> Roughly circular protrusion from slowly extruded viscous volcanic lava

In volcanology, a lava dome is a circular, mound-shaped protrusion resulting from the slow extrusion of viscous lava from a volcano. Dome-building eruptions are common, particularly in convergent plate boundary settings. Around 6% of eruptions on Earth are lava dome forming. The geochemistry of lava domes can vary from basalt to rhyolite although the majority are of intermediate composition The characteristic dome shape is attributed to high viscosity that prevents the lava from flowing very far. This high viscosity can be obtained in two ways: by high levels of silica in the magma, or by degassing of fluid magma. Since viscous basaltic and andesitic domes weather fast and easily break apart by further input of fluid lava, most of the preserved domes have high silica content and consist of rhyolite or dacite.

<span class="mw-page-title-main">Cerro Azul (Chile volcano)</span> Mountain in Curicó Province, Chile

Cerro Azul, sometimes referred to as Quizapu, is an active stratovolcano in the Maule Region of central Chile, immediately south of Descabezado Grande. Part of the South Volcanic Zone of the Andes, its summit is 3,788 meters (12,428 ft) above sea level, and is capped by a summit crater that is 500 meters (1,600 ft) wide and opens to the north. Beneath the summit, the volcano features numerous scoria cones and flank vents.

<span class="mw-page-title-main">Villarrica (volcano)</span> Active volcano in southern Chile

Villarrica is one of Chile's most active volcanoes, rising above the lake and town of the same name, 750 km (470 mi) south of Santiago. It is also known as Rucapillán, a Mapuche word meaning "great spirit's house" or " the demon's house". It is the westernmost of three large stratovolcanoes that trend northwest to southeast obliquely perpendicular to the Andean chain along the Mocha-Villarrica Fault Zone, and along with Quetrupillán and the Chilean portion of Lanín, are protected within Villarrica National Park. Guided ascents are popular during summer months.

<span class="mw-page-title-main">Explosive eruption</span> Type of volcanic eruption in which lava is violently expelled

In volcanology, an explosive eruption is a volcanic eruption of the most violent type. A notable example is the 1980 eruption of Mount St. Helens. Such eruptions result when sufficient gas has dissolved under pressure within a viscous magma such that expelled lava violently froths into volcanic ash when pressure is suddenly lowered at the vent. Sometimes a lava plug will block the conduit to the summit, and when this occurs, eruptions are more violent. Explosive eruptions can expel as much as 1,000 kg (2,200 lb) per second of rocks, dust, gas and pyroclastic material, averaged over the duration of eruption, that travels at several hundred meters per second as high as 20 km (12 mi) into the atmosphere. This cloud may subsequently collapse, creating a fast-moving pyroclastic flow of hot volcanic matter.

<span class="mw-page-title-main">Prediction of volcanic activity</span> Research to predict volcanic activity

Prediction of volcanic activity, or volcanic eruption forecasting, is an interdisciplinary monitoring and research effort to predict the time and severity of a volcano's eruption. Of particular importance is the prediction of hazardous eruptions that could lead to catastrophic loss of life, property, and disruption of human activities.

<span class="mw-page-title-main">Cascade Volcanoes</span> Chain of stratovolcanoes in western North America

The Cascade Volcanoes are a number of volcanoes in a volcanic arc in western North America, extending from southwestern British Columbia through Washington and Oregon to Northern California, a distance of well over 700 miles (1,100 km). The arc formed due to subduction along the Cascadia subduction zone. Although taking its name from the Cascade Range, this term is a geologic grouping rather than a geographic one, and the Cascade Volcanoes extend north into the Coast Mountains, past the Fraser River which is the northward limit of the Cascade Range proper.

<span class="mw-page-title-main">Types of volcanic eruptions</span> Overview of different types of volcanic eruptions

Several types of volcanic eruptions—during which lava, tephra, and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

<span class="mw-page-title-main">Taapaca</span> Volcano in Chile

Taapaca is a Holocene volcanic complex in northern Chile's Arica y Parinacota Region. Located in the Chilean Andes, it is part of the Central Volcanic Zone of the Andean Volcanic Belt, one of four distinct volcanic chains in South America. The town of Putre lies at the southwestern foot of the volcano.

<span class="mw-page-title-main">Tequila Volcano</span>

Tequila Volcano, or Volcán de Tequila is a stratovolcano located near Tequila, Jalisco, in Mexico. It stands at a height of 2,920 meters above sea level,. Stratovolcanoes, also referred to as composite volcanoes, are the "iconically" conical-shaped volcanoes, found most commonly along subduction zones. Stratovolcanoes are composed of steeply dipping layers of lava, hardened ash, and other material that erupted from the main vent such as tephra and pumice. Commonly higher than 2500 meters above sea-level, Stratovolcanoes have gentle lower slopes which gradually become steeper the higher you get with a relatively small summit crater. Due to their eruptions, Stratovolcanoes have several distinct variations giving some a specific feature such as calderas and amphitheaters.

<span class="mw-page-title-main">Lava</span> Molten rock expelled by a volcano during an eruption

Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from 800 to 1,200 °C. The volcanic rock resulting from subsequent cooling is also often called lava.

<span class="mw-page-title-main">Lateral eruption</span> Volcanic eruption which goes sideways

A lateral eruption or lateral blast is a volcanic eruption which is directed laterally from a volcano rather than upwards from the summit. Lateral eruptions are caused by the outward expansion of flanks due to rising magma. Breaking occurs at the flanks of volcanoes making it easier for magma to flow outward. As magma is pushed upward towards the volcano it diverges towards the flanks before it has a chance to erupt from the crater. When the expanding flank finally gives it releases a flow of magma. More explosive lateral eruptions are referred to as lateral blasts. Some of the most notable examples of a lateral eruption include Mount St. Helens, Mount Pelée, and Mount Etna.

<span class="mw-page-title-main">Mount Cayley</span> Mountains in British Columbia

Mount Cayley is an eroded but potentially active stratovolcano in the Pacific Ranges of southwestern British Columbia, Canada. Located 45 km (28 mi) north of Squamish and 24 km (15 mi) west of Whistler, the volcano resides on the edge of the Powder Mountain Icefield. It consists of massif that towers over the Cheakamus and Squamish river valleys. All major summits have elevations greater than 2,000 m (6,600 ft), Mount Cayley being the highest at 2,385 m (7,825 ft). The surrounding area has been inhabited by indigenous peoples for more than 7,000 years while geothermal exploration has taken place there for the last four decades.

References

  1. PD-icon.svg This article incorporates public domain material from Principal Types of Volcanoes. United States Geological Survey . Retrieved 19 January 2009.
  2. Carracedo, Juan Carlos; Troll, Valentin R., eds. (2013). Teide Volcano: Geology and Eruptions of a Highly Differentiated Oceanic Stratovolcano. Active Volcanoes of the World. Berlin Heidelberg: Springer-Verlag. ISBN   978-3-642-25892-3.
  3. "Garibaldi volcanic belt: Garibaldi Lake volcanic field". Catalogue of Canadian volcanoes. Geological Survey of Canada. 1 April 2009. Archived from the original on 26 June 2009. Retrieved 27 June 2010.{{cite web}}: CS1 maint: unfit URL (link)
  4. Schmincke, Hans-Ulrich (2003). Volcanism. Berlin: Springer. p. 71. ISBN   9783540436508.
  5. Barlow, Nadine (2008). Mars : an introduction to its interior, surface and atmosphere. Cambridge, UK: Cambridge University Press. ISBN   9780521852265.
  6. Stewart, Emily M.; Head, James W. (1 August 2001). "Ancient Martian volcanoes in the Aeolis region: New evidence from MOLA data". Journal of Geophysical Research. 106 (E8): 17505. Bibcode:2001JGR...10617505S. doi: 10.1029/2000JE001322 .
  7. 1 2 Schmincke 2003, pp. 113–126.
  8. Schmidt, A.; Rüpke, L. H.; Morgan, J. P.; Hort, M. (2001). "How Large a Feedback Effect Does Slab Dewatering Have on Itself ?". AGU Fall Meeting Abstracts. 2001: T41C–0871. Bibcode:2001AGUFM.T41C0871S.
  9. Schmincke 2003, pp. 51–56.
  10. Cañón-Tapia, Edgardo (February 2014). "Volcanic eruption triggers: A hierarchical classification". Earth-Science Reviews. 129: 100–119. Bibcode:2014ESRv..129..100C. doi:10.1016/j.earscirev.2013.11.011.
  11. Schmincke 2003, p. 52.
  12. Wech, Aaron G.; Thelen, Weston A.; Thomas, Amanda M. (15 May 2020). "Deep long-period earthquakes generated by second boiling beneath Mauna Kea volcano". Science. 368 (6492): 775–779. Bibcode:2020Sci...368..775W. doi:10.1126/science.aba4798. PMID   32409477. S2CID   218648557.
  13. Schmincke 2003, p. 54.
  14. 1 2 Cañón-Tapia 2014.
  15. 1 2 3 4 5 6 7 8 9 10 11 12 13 PD-icon.svg This article incorporates public domain material from Kious, W. Jacquelyne; Tilling, Robert I. Plate tectonics and people. United States Geological Survey.