Aqua-Lung [1] was the first open-circuit, self-contained underwater breathing apparatus (or "scuba") to achieve worldwide popularity and commercial success. This class of equipment is now commonly referred to as a twin-hose diving regulator, [2] or demand valve. The Aqua-Lung was invented in France during the winter of 1942–1943 by two Frenchmen: engineer Émile Gagnan and Jacques Cousteau, who was a Naval Lieutenant (French : lieutenant de vaisseau). It allowed Cousteau and Gagnan to film and explore underwater more easily. [3]
The invention revolutionised autonomous underwater diving by providing a compact, reliable system capable of a greater depth range and endurance than its precursors, and was a major factor influencing the development of recreational scuba diving after WWII.
The twin-hose Aqua-Lung demand regulator is the foundation of all modern scuba regulators. A diaphragm is used to control a valve to deliver the breathing gas to the diver on demand, at ambient water pressure. However, the layout has changed to a single hose system, where the second stage is split from the first stage along with the exhaust valve, as they must be kept at the same depth, and repositioned at the diver's mouth, eliminating the need for the exhaust hose, and allowing the use of a more rugged, smaller bore hose for the intermediate pressure gas supply to the second stage valve at the mouthpiece, but increasing the load on the diver's jaw and releasing bubbles nearer the eyes and ears.
The Aqua-Lung is a self-contained open-circuit demand system, which means that breathing gas is provided from high-pressure storage carried by to the diver on demand, when the diver inhales and reduces the pressure in the supply hose, subsequently the flow is shut off when not required. Once breathed, the exhaled gas is vented to the surroundings. Scuba systems invented before the Aqua-Lung were mostly closed circuit rebreather equipment, in which breathing gas flows through an ambient pressure hose to the diver, and exhaled gas is returned through a scrubber which removes carbon dioxide, to a counter-lung reservoir. Some fresh gas is added to maintain the oxygen content and is then circulated back to the diver again in a closed loop. In open circuit free-flow systems, the air is supplied at an approximately constant rate, and the diver uses only a relatively small part of the passing gas.
The original Aqua-Lung regulator was a single stage unit, packaged in a circular brass housing mounted on the cylinder valve behind the diver's neck. High pressure gas flows into the regulator from the cylinder valve outlet, and is blocked by the demand valve. When the diver consumes ambient pressure gas, the pressure falls in the low pressure chamber and the diaphragm deforms inwards pushing against the valve lifter. This opens the high pressure valve permitting gas to flow past the valve seat into the low pressure chamber. When the diver stops inhaling, pressure in the low pressure chambers quickly rises until the diaphragm returns to its neutral position and no longer presses on the valve lifter, shutting off the flow until the next breath is taken. On a single stage regulator, the flow rate through the demand valve orifice will vary depending on cylinder pressure for the same opening size, and the opening force required will vary depending on the inlet pressure and orifice area, together making the delivery rate vary as the pressure in the cylinder changes. Flow rate is also affected by downstream pressure, which varies with depth, so the effort of breathing could vary considerably during a dive, even without taking diver attitude into account. [4] : 9–13 [5] : Ch3
Later models included a first stage regulator to provide air to the demand valve at a lower pressure, compensated for depth, which allowed finer control and greater sensitivity to small pressure differences over the second stage diaphragm, but less sensitivity to cylinder pressure variation during the dive, both desirable features. Both the first and second stage valve mechanisms of the regulator are packaged in the circular brass housing mounted on the cylinder valve behind the diver's neck. High pressure gas flows into the regulator from the cylinder valve outlet, and is blocked by the first stage valve. The first stage reduces cylinder pressure to an interstage pressure, a fairly constant few bars higher than the ambient pressure, set by an adjustable spring preloading the diaphragm, The interstage breathing gas is then reduced to ambient pressure by the second stage. [4] : 17–20 [5] : Ch3
The first stage diaphragm is a spring-loaded flexible cover to the interstage pressure chamber. When the diver consumes gas from the second stage, the pressure falls in the interstage chamber and the diaphragm deforms inwards pushing against the valve lifter. This opens the high pressure valve permitting gas to flow past the valve seat into the interstage chamber. When the diver stops inhaling, pressure in the low pressure chambers quickly rises until the diaphragm returns to its neutral position and no longer presses on the valve lifter, shutting off the flow until the next breath is taken. [4] : 9–13 [5] : Ch3
The second, or demand valve stage, keeps the gas in the interstage chamber until it is opened by a reduction in pressure in the low-pressure chamber. It reduces the pressure of the interstage air supply to very nearly ambient pressure when the diver inhales the air in the low pressure chamber and the larger, more sensitive, low pressure diaphragm deflects inwards to push against the lever operating the second stage valve. When the diver stops inhaling, the flow continues only until the pressure in the low pressure chamber balances the ambient water pressure on the outside of the low pressure diaphragm. [5] : Ch3
To prevent free-flow or excessive exhaust back-pressure, the exhaust valve must be at the same depth as the diaphragm, and the only reliable place to do this is in the same housing. The air flows through a pair of large bore corrugated rubber hoses to and from the mouthpiece. The supply hose is connected to one side of the regulator body and supplies air to the mouthpiece through a non-return valve, and the exhaled air is returned to the regulator housing on the outside of the diaphragm, also through a non-return valve on the other side of the mouthpiece and through another non-return exhaust valve in the regulator housing. [5] The non-return valves fitted to each of the breathing hoses where they connect to the mouthpiece prevent any water that gets into the mouthpiece from going into the inhalation hose, and ensures that once it is blown into the exhalation hose that it cannot flow back. This slightly increases the flow resistance of air and the work of breathing, but makes the regulator easier to clear, particularly when the diver does not have enough air in their lungs to blast clear with a sharp exhalation. By rolling in the right direction in a horizontal position, the trapped water will flow by gravity into the exhaust hose, and when the mouthpiece is shallower than the diaphragm, the regulator will tend to free-flow when out of the mouth, which can also be used to purge the inhalation hose. [5] : 341
Ideally the delivered pressure is equal to the resting pressure in the diver's lungs as this is what human lungs are adapted to breathe. With a twin hose regulator behind the diver at shoulder level, the delivered pressure changes with diver orientation. if the diver rolls on his or her back the released air pressure is higher than in the lungs. Divers learned to restrict flow by using their tongue to close the mouthpiece. When the cylinder pressure was running low and air demand effort rising, a roll to the right side made breathing easier. [5] : 341 Raising the mouthpiece above the regulator increases the delivered pressure of gas at the mouth and increases exhaust resistance, and lowering the mouthpiece reduces delivered pressure and increases inhalation resistance.
An earlier underwater breathing regulator, known as the régulateur, was invented in France in 1860 by Benoît Rouquayrol. He first conceived it as a device to help assist in escaping from flooded mines. The Rouquayrol regulator was adapted to diving in 1864, when Rouquayrol met the lieutenant de vaisseau Auguste Denayrouze. The Rouquayrol-Denayrouze apparatus went into mass production and commercialization on 28 August 1865, when the French Navy Minister ordered the first units. [6]
After 1884, several companies and entrepreneurs bought or inherited the patent and produced it until 1965. In 1942, during the German occupation of France, the patent was held by the Bernard Piel Company (Établissements Bernard Piel). [7] One of their apparatuses went to Émile Gagnan, an engineer employed by the Air Liquide company. Gagnan miniaturized and adapted it to gas generators in response to a fuel shortage, which was a consequence of German requisitioning. Gagnan's boss, Henri Melchior, knew that his son-in-law Jacques-Yves Cousteau was looking for an automatic demand regulator to increase the useful endurance of the underwater breathing apparatus invented by Commander Yves le Prieur, [8] so he introduced Cousteau to Gagnan in December 1942. On Cousteau's initiative, the Gagnan regulator was modified for use in diving. Cousteau and Gagnan were issued a patent some weeks later in 1943. [9] After the war, in 1946, both men founded La Spirotechnique as a division of Air Liquide in order to mass-produce and sell their invention, this time under a new 1945 patent, and known as CG45 ("C" for Cousteau, "G" for Gagnan and "45" for 1945). This same CG45 regulator, produced for more than ten years and commercialized in France as of 1946, was the first to actually be called the "Aqua-Lung". In France, the terms scaphandre autonome ("autonomous diving set"), scaphandre Cousteau-Gagnan ("Cousteau-Gagnan diving set"), or CG45 were meaningful enough for commercialization, but to sell his invention in English-speaking countries, Cousteau needed an appealing name following English language standards. He then coined the trade name Aqua-Lung.
In the late 1940s and early 1950s, La Spirotechnique started exporting the Aqua-Lung and leasing its patent to foreign companies like the British Siebe Gorman. The equipment was a great success compared to the Rouquayrol-Denayrouze apparatus, which was limited because the technology of its time could only produce compressed-air tanks that could hold 30 atmospheres, which allowed dives of only 30 minutes at no more than ten meters depth. [10] Before 1945, French divers preferred the traditional standard diving dress with copper helmet and surface supplied breathing air. When the Aqua-Lung became available for commercial use, divers around the world found the Cousteau-Gagnan equipment smaller and easier to use than either the Le Prieur or Rouquayrol-Denayrouze apparatus. The Aqua-Lung could be also be mounted on stronger and more reliable air tanks holding up to 200 atmospheres, [11] allowing extension of diving duration to more than an hour at significant depths, including the time needed for decompression stops.
The first Cousteau-Gagnan Aqua-Lungs (like the CG45 of 1945 or the Mistral of 1955) were twin-hose open-circuit scuba. Similar configurations have since been made by various manufacturers with varying design details and numbers of cylinders. Like open-circuit scuba with single-hose regulators, they consisted of one or more high pressure diving cylinders and a diving regulator (the Aqua-Lung) that supplied the diver with breathing gas at ambient pressure via a demand valve. For more than ten years, seen in the films Épaves (Shipwrecks, 1943) and Le Monde du silence ( The Silent World , 1956) the main scuba equipment used by Cousteau and his divers was an Aqua-Lung mounted on three diving cylinders, one being used as a reserve. [12] The Aqua-Lung allowed divers to spend more time underwater, and, along with the invention of several underwater cameras, to film and explore more freely. [13]
The Aqua-Lung was not the first self contained underwater breathing apparatus, but it was the first to be widely popular. In 1934, René Commeinhes developed a firefighter's breathing apparatus which was adapted for diving as the G.C. - 42, and patented in April, 1942 (no.976,590) by his son Georges in 1937. It was used by the French Navy during the first few years of World War II. It was an open circuit system supplied from two 200 bar cylinders, and used a single stage regulator to supply gas to a bag between the two back-mounted cylinders at slightly above ambient pressure. The gas was then supplied to the left side of a full-face mask by a corrugated rubber hose, and exhausted directly from the right side of the mask. [14]
It is not clear who invented the first single hose regulator. The invention was motivated by an effort to bypass Aqua-Lung's patent on the twin-hose regulator, which involved the return of exhaust gas to the regulator to reduce the differential pressure and therefore reduce the amount and variation of over- or under-pressure of the breathing gas in the lungs. The single hose regulator accomplishes this by relocating the second stage pressure sensing diaphragm to the point of exhaust at the mouthpiece, rather than routing the exhaust back to the regulator diaphragm at the cylinder.
An advertisement in Popular Mechanics of October 1950 offered a single hose regulator for sale by Divers Supply in Wilmington, California. [15] At about the same time as Divers Supply began selling the Sport Diver regulator, Australian Ted Eldred designed a two stage single hose regulator which he marketed in Australia as the Porpoise. [16] Virtually all modern open-circuit scuba regulators use the single-hose two-stage design, though Aqualung did market a modernised twin-hose Mistral model in 2005 and 2006. [17]
Aqualung, Aqua-Lung, and Aqua Lung are registered trademarks for scuba diving breathing equipment. That trade name was originally owned in the United States by a company known as U.S. Divers (that later became Aqualung America). The term was in use before the trademark was registered by René Bussoz, who owned a sporting goods store called René Sports in Los Angeles. He obtained a contract with Air Liquide, the parent company of La Spirotechnique, to import the new scuba equipment into the United States for sale on the Pacific coast (SPACO Inc. had the contract for the Atlantic coast). Bussoz changed the name of his company to U.S. Divers and registered the name Aqua-Lung. This turned out to be a wise move, because when the French company decided not to renew his five-year contract, no one had even heard of their product, but everyone was familiar with the names he had registered. Bussoz sold the company and the trade names for a handsome profit, returning to France. The name U.S. Divers sounded very official and very American, but it was owned by a Frenchman and sold to a French company.
Air Liquide held the patent on the original "Aqualung" (also written as "Aqua-Lung" or "Aqua Lung") until the patent expired sometime around 1960 to 1963. The term "Aqualung", as far as is known, first appeared in print on page 3 of Jacques-Yves Cousteau's first book, The Silent World , in 1953. Public use of the word "aqualung", and public interest in Aqualungs and scuba diving, were started around 1953 in English-speaking counties by a National Geographical Society Magazine article about Cousteau's underwater archaeological expedition to Grand Congloué . In France, aqualung diving was popularized by Cousteau's movie Épaves, while his book The Silent World also helped significantly.
As with some other registered trademarks, the term "aqualung" became a genericized trademark in English-speaking countries as a result of common use by the public and in publications, including the BSAC's official diving manuals. Presumably, lawyers for Cousteau or Air Liquide could have slowed or stopped this genericization by taking prompt action, but this seems not to have been done in Britain, where Siebe Gorman held the British rights to both the trade name and the patent.
In the United States, the term aqualung was popularized by the popular television series Sea Hunt (1958), in which actual Aqua-Lungs appeared in early episodes. This series never said that a scuba regulator could be called anything else, or made by anyone else, but the Voit Rubber Corporation provided most of the diving equipment used in the series, and supplied Mike Nelson, the lead character. The word "aqualung" was commonly used in speech and in publications as a term for an open-circuit, demand valve-controlled breathing apparatus (even after Air Liquide's patent expired and other manufacturers started making identical equipment), occasionally also for rebreathers, and in figurative uses (such as "the water spider's aqualung of air bubbles"). The word entered the Russian language as the generic noun акваланг ("akvalang"). That word was taken into Lithuanian as the generic noun "akvalangas"; "langas" happens to be Lithuanian for "window", giving a literal meaning "aqua-window".
In the United States, U.S. Divers managed to keep "Aqualung" as a trademark. The acronym "SCUBA", or "Self Contained Underwater Breathing Apparatus", originated in the United States Navy, where it referred to a frogman's oxygen rebreather designed by Christian J. Lambertsen. SCUBA became the generic term for any type of self-contained breathing set for diving, and soon the acronym SCUBA became a common noun – "scuba" – all in lower-case. "Scuba" was a trademark for a time – used by Healthways, now known as Scubapro – one of the competitors of U.S. Divers.[ citation needed ]
In Britain, Siebe Gorman (who held the rights to the tradename "Aqualung") made no serious attempt to control use of the word, and "aqualung" remained a common public generic word for that sort of apparatus – including in the British Sub-Aqua Club's official publications – for many years.
Aqua Lung America, the current name of the U.S. Divers Company, now makes rebreathers whose tradenames or catalog descriptions include the word "Aqualung". The name U.S. Divers is now used as a trademark by Aqua Lung America for its line of snorkeling equipment.[ citation needed ]
A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness or rigging by which it is carried and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge. In the looser sense, scuba set has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface-supplied diving systems and is allowed by the relevant legislation and code of practice.
The timeline of underwater diving technology is a chronological list of notable events in the history of the development of underwater diving equipment. With the partial exception of breath-hold diving, the development of underwater diving capacity, scope, and popularity, has been closely linked to available technology, and the physiological constraints of the underwater environment.
A diving regulator or underwater diving regulator is a pressure regulator that controls the pressure of breathing gas for underwater diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.
A full-face diving mask is a type of diving mask that seals the whole of the diver's face from the water and contains a mouthpiece, demand valve or constant flow gas supply that provides the diver with breathing gas. The full face mask has several functions: it lets the diver see clearly underwater, it provides the diver's face with some protection from cold and polluted water and from stings, such as from jellyfish or coral. It increases breathing security and provides a space for equipment that lets the diver communicate with the surface support team.
Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The name scuba is an acronym for "Self-Contained Underwater Breathing Apparatus" and was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, a gas blend with a higher oxygen content, known as enriched air or nitrox, has become popular due to the reduced nitrogen intake during long or repetitive dives. Also, breathing gas diluted with helium may be used to reduce the effects of nitrogen narcosis during deeper dives.
Submarine Products Ltd (1959−1990) was a diving gear manufacturer, with a factory in Hexham in Northumberland, England. It was founded in 1959 by Lieutenant-Commander Hugh Oswell.
Buddy breathing is a rescue technique used in scuba diving "out-of-gas" emergencies, when two divers share one demand valve, alternately breathing from it. Techniques have been developed for buddy breathing from both twin-hose and single hose regulators, but to a large extent it has been superseded by safer and more reliable techniques using additional equipment, such as the use of a bailout cylinder or breathing through a secondary demand valve on the rescuer's regulator.
Porpoise is a tradename for scuba developed by Ted Eldred in Australia and made there from the late 1940s onwards. The first Porpoise was a closed circuit oxygen rebreather, and the following models were all single hose open circuit regulators.
Edward Francis Eldred was a pioneer of scuba diving in Australia. He invented Porpoise scuba gear.
In underwater diving, an alternative air source, or more generally alternative breathing gas source, is a secondary supply of air or other breathing gas for use by the diver in an emergency. Examples include an auxiliary demand valve, a pony bottle and bailout bottle.
Vintage scuba is scuba equipment dating from 1975 and earlier, and the practice of diving using such equipment.
Aqualung Group is a manufacturer of self-contained breathing apparatus and other diving equipment. It produced the Aqua-Lung line of regulators, including the CG45 (1945) and the Mistral (1955). From its founding in 1946 until 2016, the company was a division of Air Liquide. The company was sold to Montagu Private Equity in 2016, and subsequently acquired by Barings LLC in 2023.
Freeflow in underwater diving apparatus is a continuous flow of gas from a storage or supply unit. In scuba diving it is usually undesirable and considered a malfunction, while in surface supplied diving it may be a malfunction or a user selected option in demand systems, or the standard mode of operation in freeflow systems.
Scuba skills are skills required to dive safely using self-contained underwater breathing apparatus, known as a scuba set. Most of these skills are relevant to both open-circuit scuba and rebreather scuba, and many also apply to surface-supplied diving. Some scuba skills, which are critical to divers' safety, may require more practice than standard recreational training provides to achieve reliable competence.
The history of underwater diving starts with freediving as a widespread means of hunting and gathering, both for food and other valuable resources such as pearls and coral. By classical Greek and Roman times commercial applications such as sponge diving and marine salvage were established. Military diving also has a long history, going back at least as far as the Peloponnesian War, with recreational and sporting applications being a recent development. Technological development in ambient pressure diving started with stone weights (skandalopetra) for fast descent. In the 16th and 17th centuries diving bells became functionally useful when a renewable supply of air could be provided to the diver at depth, and progressed to surface-supplied diving helmets—in effect miniature diving bells covering the diver's head and supplied with compressed air by manually operated pumps—which were improved by attaching a waterproof suit to the helmet and in the early 19th century became the standard diving dress.
The history of scuba diving is closely linked with the history of the equipment. By the turn of the twentieth century, two basic architectures for underwater breathing apparatus had been pioneered; open-circuit surface supplied equipment where the diver's exhaled gas is vented directly into the water, and closed-circuit breathing apparatus where the diver's carbon dioxide is filtered from the exhaled breathing gas, which is then recirculated, and more gas added to replenish the oxygen content. Closed circuit equipment was more easily adapted to scuba in the absence of reliable, portable, and economical high pressure gas storage vessels. By the mid-twentieth century, high pressure cylinders were available and two systems for scuba had emerged: open-circuit scuba where the diver's exhaled breath is vented directly into the water, and closed-circuit scuba where the carbon dioxide is removed from the diver's exhaled breath which has oxygen added and is recirculated. Oxygen rebreathers are severely depth limited due to oxygen toxicity risk, which increases with depth, and the available systems for mixed gas rebreathers were fairly bulky and designed for use with diving helmets. The first commercially practical scuba rebreather was designed and built by the diving engineer Henry Fleuss in 1878, while working for Siebe Gorman in London. His self contained breathing apparatus consisted of a rubber mask connected to a breathing bag, with an estimated 50–60% oxygen supplied from a copper tank and carbon dioxide scrubbed by passing it through a bundle of rope yarn soaked in a solution of caustic potash. During the 1930s and all through World War II, the British, Italians and Germans developed and extensively used oxygen rebreathers to equip the first frogmen. In the U.S. Major Christian J. Lambertsen invented a free-swimming oxygen rebreather. In 1952 he patented a modification of his apparatus, this time named SCUBA, an acronym for "self-contained underwater breathing apparatus," which became the generic English word for autonomous breathing equipment for diving, and later for the activity using the equipment. After World War II, military frogmen continued to use rebreathers since they do not make bubbles which would give away the presence of the divers. The high percentage of oxygen used by these early rebreather systems limited the depth at which they could be used due to the risk of convulsions caused by acute oxygen toxicity.
The mechanism of diving regulators is the arrangement of components and function of gas pressure regulators used in the systems which supply breathing gases for underwater diving. Both free-flow and demand regulators use mechanical feedback of the downstream pressure to control the opening of a valve which controls gas flow from the upstream, high-pressure side, to the downstream, low-pressure side of each stage. Flow capacity must be sufficient to allow the downstream pressure to be maintained at maximum demand, and sensitivity must be appropriate to deliver maximum required flow rate with a small variation in downstream pressure, and for a large variation in supply pressure, without instability of flow. Open circuit scuba regulators must also deliver against a variable ambient pressure. They must be robust and reliable, as they are life-support equipment which must function in the relatively hostile seawater environment, and the human interface must be comfortable over periods of several hours.