Scuba skills

Last updated
The instructor monitors a trainee practicing diving skills. Diving training -c.jpg
The instructor monitors a trainee practicing diving skills.

Scuba skills are skills required to dive safely using self-contained underwater breathing apparatus, known as a scuba set. Most of these skills are relevant to both open-circuit scuba and rebreather scuba, and many also apply to surface-supplied diving. Some scuba skills, which are critical to divers' safety, may require more practice than standard recreational training provides to achieve reliable competence. [1]

Contents

Some skills are generally accepted by recreational diver certification agencies as basic and necessary in order to dive without direct supervision. Others are more advanced, although some diver certification and accreditation organizations may require these to endorse entry-level competence. Instructors assess divers on these skills during basic and advanced training. Divers are expected to remain competent at their level of certification, either by practice or through refresher courses. Some certification organizations recommend refresher training if a diver has a lapse of more than six to twelve months without a dive. [2] [3]

Skill categories include selection, functional testing, preparation and transport of scuba equipment, dive planning, preparation for a dive, kitting up for the dive, water entry, descent, breathing underwater, monitoring the dive profile (depth, time, and decompression status), personal breathing gas management, situational awareness, communicating with the dive team, buoyancy and trim control, mobility in the water, ascent, emergency and rescue procedures, exit from the water, removal of equipment after the dive, cleaning and preparation of equipment for storage and recording the dive, within the scope of the diver's certification. [4] [5] [6] [7]

Basic open circuit equipment

Preparing and dressing in the diving suit

A scuba diver should be able to assess what type of diving exposure suit is preferable for the planned dive, to confirm that it is in safe, usable condition and the right size, and to put it on correctly. Entry-level skills usually include the use of wet suits, but in countries where the water and/or weather conditions are cold, beginners may need dry suit training. Recreational divers trained in warm tropical waters may not initially need to learn any diving suit skills. Using a dry suit safely requires special skills, including buoyancy control, inversion recovery, emergency venting, and blowup recovery. [8] [9]

Preparing the equipment

Divers are individually responsible for the function of their personal equipment. When diving as buddies with other divers, they are expected to familiarize themselves with the functional aspects of the buddy's equipment as well, to be able to operate it in an emergency. [10]

Scuba assembly

Assembly of the scuba set - connection of the regulator to the cylinder valve Open Water Diver-TauchSport-Steininger.jpg
Assembly of the scuba set – connection of the regulator to the cylinder valve

The set is usually stored and transported as separate major components: harness and buoyancy compensator, cylinder(s) and regulator(s), and assembled for each use. Correct assembly and function are critical for safety and in some cases for survival. All certification agencies require all autonomous divers to be competent to assemble and test functionality of their own sets. [11]

Scuba assembly generally entails mounting the cylinder(s) on the harness, connecting the regulator(s) to the cylinder valves, ensuring an uncontaminated and pressure-tight seal, and connecting the low-pressure hose to the buoyancy compensator inflation valve. Validating the function of the regulator and inflation valve is essential to proper scuba assembly, and always reviewed during pre-dive checks. Because there may be a significant interval between assembly and use, this check is commonly repeated just before putting the set on, and may be repeated just before descent. [8] [12]

Pre-dive checks

Pre-dive check before a surf entry Pre-dive check in Malibu California.jpeg
Pre-dive check before a surf entry

Pre-dive checks include equipment inspection and function testing, and review of the dive plan with the team. Such checks can reveal problems that could make it necessary to abort the dive, including some which could potentially be fatal.

Some pre-dive checks are done while donning the dive equipment. Establishing a routine for the order of donning and checking can help avoid skipping critical checks; a written checklist may be more reliable. The risk of skipping a check is increased if the process is disrupted, and it is good practice never to distract a diver unnecessarily during a check. The value of a written checklist increases with the complexity of the equipment used, and even more so if there are distractions.

For a shore entry, kitting up may be broken up into stages, with the suit, scuba set, and weights fitted at a convenient place, and the mask and fins added when entering the water. In this case, some of the equipment may be checked both when it is donned and again just before committing to the water. If a long surface swim is necessary, the scuba set function and pressure should be checked again just before descent. A swim through heavy kelp can roll the cylinder valve closed or partially closed.

Responsibility for pre-dive checks for professional divers is more complex, based on the concept of the duty of care. It is usually defined in an organizational operations manual, which may stipulate recorded checklists for the equipment in use, and norms for the participation of other diving team members. [13] [14]

Entry and exit

Stride entry or front step entry from a low dockside US Navy 110727-N-KB666-379 Arnulfo Lopez conducts a front step entry prior to search operations with Mobile Diving and Salvage Unit (MDSU) 2.jpg
Stride entry or front step entry from a low dockside
Backward roll entry from a small boat US Navy 110827-N-ZZ999-243 Navy Diver 2nd Class Ryan Kithcens, assigned to Mobile Diving and Salvage Unit (MDSU) 1, dives into San Diego Bay to sea.jpg
Backward roll entry from a small boat
Scuba diver exiting water by stern platform ladder on a sailing catamaran Scuba diver exiting water by stern platform ladder P2143568.JPG
Scuba diver exiting water by stern platform ladder on a sailing catamaran

Certification standards often require a diver to be able to get in and out of the water under a range of circumstances. Divers with disabilities or who are otherwise physically unable to make a safe entry or exit are expected to be able to identify the conditions under which they need help. Then they are either to arrange for assistance, or to refrain from diving in those conditions. [8] [12] [15]

Common entry and exit points include: [12] [15]

Positive and negative entry

The default condition for water entry is positive buoyancy, which allows divers to pair up and make final checks before descent, and to descend together, but negative buoyancy entry is appropriate in some circumstances, for example when there is a strong surface current and a small descent target. [16]

In negative entries the diver establishes negative buoyancy before entering the water, allowing immediate descent. Negative buoyancy is generally considered a higher-risk procedure. It requires the buoyancy compensator and dry suit to be deflated before entry, more precise control of weighting to prevent rapid uncontrolled descent, confidence in the ability to equalize the ears and sinuses during rapid descent, and the ability to control the descent rate and achieve neutral buoyancy without delay. [16] This procedure requires all pre-dive checks to be done before entering the water, and the consequences of getting buoyancy settings wrong or neglecting a breathing gas setup check can be serious. Failing to connect inflator hoses, to zip up a dry suit, or to open the cylinder valve sufficiently can quickly lead to an emergency. Other problems can arise if the diver is too negatively buoyant and has trouble equalizing, or sinks so fast that the inflator valves cannot fill the dry suit or BCD fast enough to compensate for the compression of descent. In poor visibility, buddy pairs may lose contact right at the start of the dive. [16]

An acceptably safe negative entry requires pre-dive checks on the regulator and BC inflation function, and a sufficiently accurate balance of BC and/or suit inflation to ballast dive weights. This becomes more complex when the diver carries large amounts of breathing gas, because the weighting must allow neutral buoyancy at the shallowest decompression stop when the gas is expended, and the diver is therefore relatively more heavily weighted at the start of the dive. The diver should be certain that the cylinder valve is fully open and the inflator hose connected. This requires testing the regulator flow, the work of breathing, and the inflation valve function immediately before entering the water. This all must be done while observing the pressure gauge, particularly if there is any possibility that anyone else has handled the valve after the set is on the diver's back. Extra care is required here because the diver may have inadvertently closed or partially closed the valve. Any movement of the gauge needle while inhaling is a warning of a partially closed valve. [16] [17]

Entries

Standard water entries that are generally taught to entry-level divers include:

Exits

Standard exit procedures include:

Breathing from the demand valve

This must be done correctly to make effective use of limited air supply, and to avoid drowning. Most recreational scuba diving is done with a half mask, so the demand valve is held in the mouth, gripped by the teeth, and sealed by the lips. Over a long dive this can induce jaw fatigue, and for some people a gag reflex. Various mouthpiece styles are available off the shelf or as customized items, and one of them may work better if either of these problems occurs. The diver inhales and exhales through the mouth, and must be able to seal off the nasal passages from the pharynx so that breathing remains possible with a flooded or dislodged mask. [19] [15] [12] Under most circumstances, scuba breathing differs little from surface breathing. A full-face mask may allow the diver to breathe through the nose or mouth as preferred.

The demand valve adds a little respiratory dead space to the airway. The work of breathing is greater due to hydrostatic pressure differences between the depth of the demand valve and the lungs, and due to cracking pressure and flow resistance in the demand valve. These factors make a slow and deep breathing cycle more energy efficient and more effective at carbon dioxide elimination. Part of the skill of diving is learning to relax under water and breathe more slowly and deeply, while minimizing exertion, by learning good buoyancy, trim, maneuvering, and propulsion skills. Breathing too slowly or too shallowly does not ventilate the lungs sufficiently, and risks hypercapnia (carbon dioxide buildup). [19] [15] Breathing effort increases with depth, as density and friction increase in proportion to the increase in pressure. In the extreme case, all of a diver's available energy may be spent on breathing, leaving none for other purposes. This may cause carbon dioxide buildup. If this cycle is not broken, panic and drowning may follow. The use of a low-density inert gas, typically helium, in the breathing mixture can reduce this problem, while diluting the narcotic effects of the other gases. [20]

Scuba divers are typically taught to not to hold their breath underwater, as in some circumstances this can result in lung overpressure injury. This is a risk only during ascent, when air expands in the lungs. During ascent the airways must remain open. [19] [15] Holding the breath at a constant depth for short periods with a normal lung volume is generally harmless, as long as there is sufficient ventilation on average to prevent carbon dioxide buildup. In fact, this is a standard practice among underwater photographers using open circuit scuba, to avoid startling fish or other subjects with regulator noise. Breath-holding during descent can eventually cause lung squeeze, and it may also allow the diver to miss warning signs of a breathing-gas supply malfunction until it is too late to correct it.

Skilled open-circuit divers make small adjustments to buoyancy by adjusting their average lung volume during their breathing cycles. This adjustment is generally in the order of a litre of gas, and can be maintained for a moderate period, although it is more comfortable to adjust the volume of the buoyancy compensator over longer periods. [21]

The practice of shallow breathing or skip breathing should be avoided, as it may cause carbon dioxide buildup, which can result in headaches and a reduced capacity to recover from a breathing gas supply emergency. It is not an efficient method to conserve breathing gas.

The skills appropriate to single- and twin-hose scuba regulators differ enough that they require relearning for a change from one to the other, but twin-hose open circuit is obsolete, and single-hose skills are portable between models.

Demand-valve clearing and recovery

Divers may remove their demand valves from their mouths under water for several reasons, both intentionally and unintentionally. In all cases, the casing may fill with water that must be removed before the diver can breathe again. This is known as clearing or purging the demand valve. The two clearing techniques for single hose regulators are: [19] [15]

Divers may become nauseous and vomit underwater. Vomit left inside the DV must be cleared before breathing can resume. In this case it is usual to remove the DV from the mouth, flood it to rinse, and clear using the purge button. The process may be repeated as necessary. If the DV breathes wet after purging, something may be stuck in the exhaust valve. Flooding the DV and clearing again with the mouthpiece blocked usually clears the exhaust valve. [22]

If the DV is dislodged from the diver's mouth unintentionally, it may end up in a place out of view of the diver. Three or more methods aid recovery: [8]

If the diver has difficulty locating the demand valve by these methods, the octopus DV or bailout set can be used in the interim. Occasionally the DV gets snagged in such a way that it cannot be easily recovered. In some cases it may be prudent to abort the dive and surface, but this may not be practicable and it may be necessary to remove the harness partially or completely to recover the primary, after which the harness can be readjusted. A dive buddy can usually find the DV easily. If the DV cannot be reached, it is prudent to terminate the dive, as a free-flow could empty the cylinder in minutes.

Mask clearing

Practicing mask clearing during entry level training Frau beim Tauchen (2).jpg
Practicing mask clearing during entry level training

Water commonly leaks into the mask. This can interfere with clear vision, requiring the diver to flush it out. Reasons for leakage include poor fit, stray hair breaking the seal, facial muscle movement that causes temporary leaks, or the impact of external objects against the mask. [12] Most diving masks can fog up due to condensation on the inside of the faceplate. This is avoided by applying an anti-fog surfactant to the inner surface before the dive. Otherwise, the diver can deliberately flood the mask slightly to rinse off the droplets, and then clear the mask.

Half mask

This is a mask not directly connected to the air supply. The only available source of air to displace the water is the diver's nose. The procedure involves exhaling through the nose into the mask until the water has been displaced by air. During this process, the air must be prevented from escaping at a high point, or the water will not be expelled. If the mask does not fit in such a way that the top of the skirt remains sealed, the diver must press the upper part against the face. [12] A half mask is held in place by a single strap, which though generally reliable and easy to inspect, has been known to fail. The skills are portable between models.

Full-face mask

The procedure for clearing these depends on the construction, as several types exist. In models that use an internal mouthpiece, the procedure is the same as with a half mask. Other models automatically drain through the exhaust port of the demand valve, provided the water can get to it. Models that use an oral/nasal internal seal usually drain to the demand valve or an additional drain valve at a low point when the diver's face is roughly upright or face down, and these clear during normal breathing for small leaks. They may be cleared of major flooding by using the DV's purge button to fill the mask with air. [8]

Buoyancy control, trim and stability

Good trim and buoyancy control DIR Divers Sandra edwards 2010.JPG
Good trim and buoyancy control

Buoyancy control

The diver needs to be able to establish three states of buoyancy at different stages of a dive, [23] using weights and a buoyancy compensator to control buoyancy.

Weighting is the first stage of buoyancy control. The diver must be able to achieve neutral buoyancy at all stages of the dive. Buoyancy is generally controlled by adding gas to variable volume equipment (BCD and dry suit), but weighting is constant throughout a normal dive, and is only jettisoned in an emergency. The condition of lowest total diver weight is when the breathing gas has almost been used up, at the end of the dive, when it may be critical for the diver to remain at a shallow decompression stop depth. If there is any reasonable possibility of needing to stop for decompression during the ascent, the diver's safety depends on being able to maintain neutral buoyancy at that depth, so correct weighting for a dive requires enough weight to allow neutral buoyancy at the shallowest stop, and slightly above it, with almost empty gas reserves, and air in the lungs. Any more weight just makes buoyancy control during the dive more difficult, less is unsafe. [21]

In the water the diver adjusts the BC's volume to increase or decrease buoyancy, in response to various effects that alter the diver's overall density. [23]

Neutral buoyancy matches the average density of the diver and equipment to that of the water. This is achieved by increasing buoyancy when the diver is too heavy, usually by adding gas to the BC, or decreasing buoyancy when the diver is too light, usually by venting gas from the BC. Any uncompensated change in depth from a position of neutrality changes the buoyancy, making buoyancy control a continuous procedure—the diving equivalent of balance, in a positive feedback environment. [23] Neutral buoyancy is an unstable condition; any deviation tends to increase until corrected by the diver, and the degree of instability is proportional to the volume of compressible material on the diver, which includes the air in the lungs, diving suit, and buoyancy compensator. To minimise this instability the amount of gas needed to attain neutral buoyancy must be minimised, which implies minimum excess weighting. [21]

It is always necessary to vent gas during ascent to maintain neutral or a small amount of positive buoyancy and control the ascent. Similarly, during a descent, gas must repeatedly or continuously be added to prevent a runaway descent. [23]

Buoyancy control compensates for changes of volume of the diving suit with changes of depth, and changes of mass due to using up the breathing gas. [21]

Trim

Diver trim is the orientation and posture of the body in the water, determined by the distribution of weight and buoyancy along the body as well as by the other forces acting on the diver. The stability and static trim of a scuba diver are important both at the surface and under water. Divers must maintain trim under water at neutral buoyancy, while they must hold surface trim at positive buoyancy.

When the BC is inflated at the surface to provide positive buoyancy, the centre of buoyancy and centre of gravity of the diver are generally at different places. The vertical and horizontal separation of these centroids determines the static trim. The diver can usually overcome the trimming moment of buoyancy, which requires directed effort. The diver can adjust trim to suit circumstances such as swimming face down or face up, or remaining vertical. The diver's center of gravity is determined by the distribution of weight, and buoyancy is determined by the equipment in use, particularly supplemental weights and the buoyancy compensator, which can significantly influence the position of the centre of buoyancy as it is inflated and deflated. Stable trim implies that the centre of buoyancy is directly above the centre of gravity. Any horizontal offset generates a moment that rotates the diver until the equilibrium condition is restored.

In almost all cases, the center of buoyancy with an inflated BC is nearer the head than the center of gravity, and BCs are designed to provide this as the default condition, as an inverted diver floating at the surface is at risk of drowning. The offset in the forward/backward axis is quite frequently significant, and is usually the dominant factor in determining static trim. At the surface it is generally undesirable to be trimmed strongly face down, but it is useful to be able to trim face down at will. Vertical trim is acceptable providing it can be overcome for swimming.

Underwater trim is the diver's attitude (orientation) in the water, in terms of balance and alignment with the direction of motion. The free-swimming diver may need to trim erect or inverted at times, but in general, a horizontal trim has advantages both for reduction of drag when swimming horizontally, and for observing the bottom. A slightly head-down horizontal trim allows the diver to direct propulsive thrust from the fins directly to the rear, which minimizes disturbance of sediments on the bottom, [24] and reduces the risk of striking delicate benthic organisms with the fins. A stable horizontal trim requires the diver's center of gravity to be directly below the center of buoyancy (the centroid). Divers can compensate small errors fairly easily, but large offsets may make it necessary for the diver to constantly exert significant effort towards maintaining the desired attitude. The position of the center of buoyancy is largely beyond the diver's control, though the cylinder(s) may be shifted in the harness by a small amount, and the volume of the BC has a large influence when inflated. Most of the control of trim available to the diver is in the positioning of ballast weights. Divers can fine tune trim by placing smaller weights along the body length to bring the center of gravity to the desired position.

Mobility and maneuvering

The scuba diver usually uses legs and fins to move in the water, rarely but occasionally walking on the bottom as circumstances require. Divers occasionally use hands to grasp solid objects and remain in position in a current, but a competent diver generally does not use hands for propulsion or maneuvering, as hands are often needed for other purposes while finning. [24] Techniques for effective propulsion using fins include:

Techniques for maneuvering using fins include:

Most of these skills are trivially portable among various fin models, with the exception of back kick, which may not work with soft and flexible fins, and finning techniques which require relative movement of the feet, which do not work with monofins.

Ascents and descents

Ascent and descent are the phases of a dive where ambient pressure changes, and this comes with hazards. Direct hazards include barotrauma, while indirect hazards include buoyancy instability and the physiological effects of changes in gas solubility. The main risk is bubble formation from supersaturated inert gas in body tissues, known as decompression sickness. [12] [19] [15] [27] The skill of equalization is essential to avoid injury during both activities.

Descent

Uncompensated pressure differences between the increasing ambient pressure and the internal pressure of gas-filled spaces of the diver's body and equipment can cause barotrauma of descent. Buoyancy control and descent rate are fairly straightforward in practice. Divers must control descent rate by adjusting the volume of gas in the buoyancy compensator and, if worn, the dry suit. They must be able to limit descent rates to match the ability to equalize, particularly the ears and sinuses, and must be able to stop any descent quickly without going into an uncontrolled ascent. In most cases the bottom provides a physical limit to descent, but this is not always the case, as in wall diving or blue-water diving. A competent diver can stop at a desired depth or distance above the bottom, adjust to neutral buoyancy, trim level, and proceed with the dive. [12] [19] [15] [27]

Ascent

Safety stop during ascent Diving safety stop.jpg
Safety stop during ascent

The pressure reductions due to ascent can also cause barotrauma. Sinuses, lungs and ears are most vulnerable, although they normally equalize automatically during ascent. Problems may arise in the middle ear if eustachian tubes become blocked. Lungs can be injured if a diver forcibly holds their breath during ascent, which can occur during an emergency free ascent when panicked, or a rapid uncontrolled ascent. Because lung over-expansion is potentially life-threatening, entry level diver training emphasizes learning not to hold the breath, and to exhale slowly and continuously during emergency ascents. Divers learn to clear blocked eustachian tubes during ascent at the start of entry level training. [12] [19] [15]

Uncontrolled ascent can increase risk of decompression sickness and lung over-expansion injury even when diving within the no-stop limits of the decompression tables. All entry level training includes skills of controlling buoyancy during ascent, but certification agencies differ in the criteria they use to assess competence. Most require divers to be able to limit ascent rates and achieve neutral buoyancy at a specified depth during ascents without significantly overshooting the target depth.[ citation needed ] Divers must do this using only a depth gauge or dive computer for reference, but this is a skill that usually requires more practice than recreational, entry level training provides. Divers must vent the buoyancy compensator and dry suit at a rate that provides near neutral buoyancy at all stages of the ascent. A slightly positive buoyancy may be used to assist ascent, and neutral buoyancy to stop. [27]

Most dry suits are fitted with an automatic dump valve, which divers can adjust to provide an approximately constant volume of gas in the suit during ascent. This allows a diver to concentrate on controlling ascent rate via the buoyancy compensator. These skills become critical in decompression stops, and even divers with excellent buoyancy control use aids to reduce risk. Shot liness are used at all levels of diving, and are in common use during entry level training as a visual aid to ascent rate and depth control, and as a fallback physical aid. Typically only advanced recreational divers learn to deploy and use surface marker buoysand decompression buoys but professional divers consider these entry level skills. [12] [19] [15] Use of a physical depth and ascent rate limiter is recognised as a safety enhancement, but the skills of an unaided midwater ascent are part of basic scuba diving competence. When a decompression buoy is used to control rate of ascent, a slight negative buoyancy helps keep an appropriate tension in the line, which holds the buoy upright for better visibility, and reduces entanglement risk. The diver can estimate ascent rate by the rate of winding in the line. [24]

Two major causes of excessive ascent rate and uncontrolled ascents are too little ballast weight, where the diver cannot achieve neutral buoyancy at the end of a dive, and floats to the surface, and too much ballast weight, where the diver has difficulty in maintaining neutral buoyancy with a large volume of gas in the buoyancy compensator, which is very sensitive to depth changes. [21]

Equalizing

Clearing the ears on descent Compensacion.jpg
Clearing the ears on descent

During ascent and descent, gas spaces in both diver and equipment undergo pressure changes that cause the gas to expand or compress, possibly causing damage. Some spaces, such as the mask, release excess gas when pressure breaks the seal to the face, but have to be equalized during compression to avoid mask squeeze. Others, such as the buoyancy compensator bladder, expand until the over-pressure valve opens. The ears usually vent naturally through the eustachian tubes, unless they are blocked. During descent they do not typically equalize automatically, so the diver must equalize deliberately. [12] [19] [15]

Communications

One way to signal "I'm OK" at the surface Diving signal ok surface one hand.jpg
One way to signal "I'm OK" at the surface
Are you OK? or I am OK! Dive hand signal OK 1.png
Are you OK? or I am OK!
Something is wrong. Dive hand signal Not Right.png
Something is wrong.

Divers need to communicate underwater to coordinate a dive, to warn of hazards, to indicate items of interest, and to signal distress. Most professional diving gear includes voice communication equipment, while recreational divers generally rely on hand signals and occasionally on light signals, touch signals, and text written on a slate. [28] Through-water voice communication equipment is also available for recreational diving, but requires full-face masks. [29] [30]

Divers can use rope signals when connected to another diver, or tethered by either rope or umbilical. A few basic codes using "pulls" and "bells" (short tugs, grouped in pairs) are partly standardized. Professional divers mostly consider these backup signals if voice communications fail, but they can be helpful for recreational and particularly technical divers, who can use them on surface marker buoy lines to signal to the surface support crew. [31]

Divers, including professionals, generally use hand signals when visibility allows. Recreational divers must be familiar with the hand signals their certification agency uses. These have to a large extent been standardized internationally and are taught in entry level diving courses. [32] Technical divers commonly add a few more.

A diver uses the dive light to make light signals in dark places with reasonable visibility, although few have been standardized. Lights can also be used to illuminate hand signals. Penetration divers also use a few touch signals in situations of extremely low visibility.

Buddy diving

For recreational diving, buddy diving is the default mode, and the relevant skills of remaining close enough to be able to assist each other are considered entry level skills. [10]

The primary competence expected of a buddy diver is to be close enough to their buddy at all times during a dive so that other buddy skills are possible when needed. When this function fails, the other skills cannot be applied.

As it is quite common for buddy pairs to become separated during a dive, the skill of finding a lost buddy is central to the skill-set, and the most useful skill for this purpose is awareness of where the buddy was when last seen, and a knowledge of the dive plan sufficient to predict where they are most likely to have gone since last seen. This requires a high level of situational awareness in less than ideal conditions. It also requires a reasonably high level of cooperation between the divers, and an agreement of who is leading and who is following at any given time. A useful rule is that a diver towing a surface marker buoy is leading, as the surface team will know where they are with considerable accuracy and confidence compared to an unmarked diver, and therefore is not lost. The diver with the buoy is also encumbered by it and less able to move around quickly. This rule is commonly applied when divers dive in a larger group. A marker may be attached to the line or the diver to make them more visible and recognisable by the others.

The exact procedure to be followed in the event of buddy separation is variable, and depends on circumstances and the dive plan. The default taught by many instructors is to spend no more than a minute searching at depth, and then to surface, in the assumption that the other diver will do the same. In most dives this implies aborting the dive completely, as there is usually not enough gas to safely descend again after meeting up at the surface, so it is basically a procedure of last resort.

Solo diving

Solo diving requires an additional set of skills, but as compensation, the solo diver will not be separated from their buddy, as they do not have one. Consequently some divers follow solo diving protocols in the company of other divers, who they are not obliged to keep in contact with during the entire dive, nor search for if separated, nor abort the dive if they do not find them after being separated. [33] As compensation for the lack of a buddy to help if they get into trouble, the solo diver is expected both to be sufficiently skilled not to get into trouble as easily, and to be equipped to get out of most forms of trouble by their own efforts, the most obvious being that the solo diver carries an independent emergency gas supply that is immediately available for use, and sufficient to get them to the surface safely from any point on the planned dive, after any reasonably foreseeable problem. [34] [35]

Emergency procedures

Training includes procedures for managing reasonably foreseeable emergencies. These have been developed and standardized, and are included when the scope of diving may put divers at risk. Some of these are basic to entry level training, and others are more advanced.

Loss of breathing gas

Any interruption of air supply for more than a few seconds constitutes a life-threatening emergency. Divers address temporary interruptions due to flooding or dislodging the demand valve by recovering and clearing it. Even ending the dive with an emergency ascent is appropriate in some circumstances. Other solutions involve finding an alternative gas supply, either from the diver's emergency supply, or from another diver. [8] [12]

Regulator malfunctions

Divers can manage malfunctions to a greater or lesser extent, but some, such as a burst hose, are generally not recoverable. Sometimes it is possible to save gas on a manifolded twin or a single cylinder with dual regulators, if the cylinder valve is closed in time.

  • Free-flow can be managed by feather breathing, which involves manual cylinder valve operation to control gas flow, a procedure also known as feathering the gas or feathering the valve. This only works if the cylinder valve is easily reachable, and this maneuver is usually limited to side- or sling-mounted cylinders. [36] [37] [38]
  • Regulator icing is a problem in cold water, particularly with equipment not rated for cold water operation. Freezing of water in contact with the first stage can lock it open, initiating a free-flow which will further cool the regulator. The only way this can be stopped is to close the supply valve from the cylinder. Then the diver must switch to an alternate regulator that receives its gas supply from a different cylinder valve. A similar problem can occur with the second stage, and a heavy free flow will commonly cause icing of both stages, even in water that is not particularly cold. [39]
  • Water leaks and wet breathing are usually caused by damage to the second-stage regulator exhaust valve, diaphragm, or mouthpiece. The diver should switch to an alternative second stage if available, though careful breathing and placement of the tongue in the air path can minimize salt spray aspiration. [40]
  • Gas leaks – Most leaks cannot be corrected underwater. The diver should consider the risk of the leak getting worse when deciding whether to terminate a dive. [40]
  • Excessive work of breathing – Some second stages can be adjusted to reduce breathing effort at depth, others cannot. The diver may have the option to switch to an alternate gas supply or regulator, but should consider the consequences of the problem deteriorating further when deciding whether to terminate a dive. [40]
  • Juddering, moaning, and popping are signs of mechanical problems, some of which may get worse during the dive, but do not in themselves constitute an emergency. Popping is usually a sign of a slow first-stage leak. [40]

Emergency air sharing

This may involve sharing a single demand valve, or one diver providing a secondary air source to another. The gas may be from the same scuba set or from a separate cylinder. [1] The preferred technique of air sharing is donation of a demand valve from a buddy diver who does not need it. The standard approach is "octopus donation," in which the buddy offers a secondary demand valve, although this approach is not universal. A variation is for the buddy to offer a primary demand valve, while switching to the secondary. This is often more likely to calm a diver in trouble, because they will know that the gas will be appropriate for the depth. [1]

Alternatively, two divers can share a single demand valve. This is known as buddy breathing. Divers alternately breathe from one demand valve, each taking two breaths. Because the receiver is likely to initially be out of breath, they may need a few more breaths at first to stabilize. The technique has high task loading and high risk, and is no longer taught widely, although some groups still use it. [41]

Once air sharing has been established, the dive terminates, unless the underlying problem can be resolved. [12] [19] [15] Assisted ascents using a secondary demand valve are simpler than buddy breathing ascents, the risk to both divers is lower, gas consumption may be less, and the skill is quicker to learn. [1] [41]

Emergency ascents

An emergency ascent is made when no available procedure will allow a dive to continue safely. These are independent ascents, where a single diver either manages the ascent alone, or is helped by another diver who provides gas, propulsion, buoyancy, or other assistance. In an emergency ascent the diver initiates the action intentionally, and chooses the procedure. Ascents that are involuntary or unintentionally uncontrolled are considered accidents.

Other forms of ascent which may be considered emergency ascents are:

Emergency ascent training policy differs considerably among the certification agencies, and has generated controversy regarding risk-benefit. Some agencies consider it irresponsible to fail to teach skills which could allow divers to safely manage foreseeable emergencies. Others claim that you are more likely to injure divers while training these skills than they are ever likely to actually need them. Accident statistics remain inconclusive.

Buoyancy compensator failure

It may be necessary for the diver to establish positive buoyancy if the buoyancy compensator fails. The following methods are available:

Buoyancy compensator blowup

If there is a continuous gas leak into the buoyancy compensator, the diver can continuously dump excess gas while disconnecting the low-pressure supply hose. If the diver is upright or trimmed even slightly heads-up, this usually allows gas to exit faster than it enters. This ability to disconnect the inflation hose under pressure is an important safety skill, as an uncontrolled buoyant ascent puts the diver at risk of lung overpressure injury, and depending on decompression obligation, at severe risk of decompression sickness. Once disconnected, the diver can neutralize buoyancy by oral inflation or further deflation. If using a full-face mask, the hose can be temporarily reconnected to add gas when needed.

Dry suit flooding

A dry suit leak can range from a trickle to a flood. Two aspects of a catastrophic flood put the diver at risk. [9]

Dry suit blowup

These possible consequences are similar to those of a BCD blowup, and are managed in similar ways. The instinctive reaction of trying to swim downward is usually counterproductive, as it will prevent the automatic dump valve from releasing excess gas, while at the same time inflating the suit legs, making it difficult to fin. If the boots slip off it will be impossible to fin. The diver must ensure that the dump valve is fully open and at the high point of the suit. Then the diver should urgently disconnect the inflation hose. Many suits will release air at the neck or cuff seal if those are the highest points of the suit. It may be necessary to descend after this to compensate for rapid ascent, dumping gas from the BCD. After achieving neutral buoyancy, a normal ascent is usually possible, as it is seldom necessary to add air to the suit during ascent. [9] The type of inflation hose connection can make a large difference to the urgency of the situation. The CEJN connector allows a much faster gas flow than the Seatec quick-disconnect fitting, and for this reason the DIR community considers it safer.

Manifolded twins

The secondary second-stage demand valve can be kept in place just under the diver's chin by an elastic loop which goes around the neck. Secondary with neck loop.jpg
The secondary second-stage demand valve can be kept in place just under the diver's chin by an elastic loop which goes around the neck.

The Doing It Right movement developed one of the standardized configurations with manifolded twins, specifically for cave exploration. Many technical divers use these procedures. The diver breathes normally from a right-side primary second-stage regulator, mounted on a long hose tucked under at the waist and looped behind the head for quick deployment. A secondary second-stage regulator is carried just beneath the chin, suspended by a breakaway elastic loop around the neck, and supplied from the left-side, first-stage cylinder by a shorter hose. The cylinder valves and manifold isolation valve are normally open: [24]

Dive management skills

These are the skills of following the dive plan to avoid undesirable events. They include planning and monitoring the dive profile, gas usage and decompression, navigation, communication, and modifying any plan to suit actual circumstances.

Monitoring depth and time, and decompression status

Whenever a dive may require decompression stops, it is necessary to monitor dive depth and duration to ensure that appropriate decompression procedures are followed if necessary. This process may be automated via a dive computer, in which case the diver must understand how to read the output and respond correctly to the information displayed, and for more complex dive plans, to input the appropriate settings. The display and operation of dive computers is not standardized, so the diver must learn to operate the specific model of computer. Accurate monitoring of depth and time is particularly important when diving using a schedule requiring decompression according to decompression tables, when a diving watch and depth gauge are used. [12] [19] [15]

Undertaking dives with obligatory decompression stops requires the diver to follow the appropriate decompression profile. This includes maintaining depth for necessary intervals, and ascending at the correct rate. Ideally the diver should be able to do this without a static reference, referring only to instrument displays, but a decompression buoy or shotline may be used to indicate appropriate stopping points, thereby reducing any associated risk. Decompression stops are considered an advanced skill for recreational divers, but may be considered a basic skill for professional divers. Recreational divers are required to be able to avoid incurring a staged decompression obligation as a basic skill.

Breathing gas management

For the basic case of no-decompression open-water diving, which allows a free emergency ascent, breathing gas management requires ensuring sufficient air remains for a safe ascent (plus a contingency reserve). It also considers the possibility of an assisted ascent, where the diver shares air with another diver. Gas management becomes more complex when solo diving, decompression diving, penetration diving, or diving with more than one gas mixture. [19] [15]

A submersible pressure gauge indicates the remaining gas pressure in each diving cylinder. The amount of available gas remaining can be calculated from the pressure, the cylinder internal volume, and the planned reserve allowance. The time that the diver can dive on the available gas depends on the depth, gas mixture, work load, and diver fitness. Breathing rates can vary considerably, and estimates are largely derived from experience. Conservative estimates are generally used for planning purposes. The diver must know when to turn the dive and start the exit and ascent while there is enough gas to surface safely. [12] [19] [15]

Nav finder and underwater compass - basic underwater navigation tools UW Navigation tools.jpg
Nav finder and underwater compass – basic underwater navigation tools
Suunto SK-7 diving compass in aftermarket wrist mount with bungee straps Suunto SK-7 diving compass in aftermarket wrist mount P9021026.JPG
Suunto SK-7 diving compass in aftermarket wrist mount with bungee straps

The two basic aspects of scuba navigation are surface navigation to find the dive site, and underwater navigation, to find specific places and to reach the ascent point.

Underwater navigation [43] includes observing natural features, operating a compass, estimating distance travelled, and setting distance lines used to navigate underwater. Basic navigation is normally taught as part of entry level certification. Advanced underwater navigation is usually part of advanced recreational diver training including rescue training. [44]

Use of auxiliary equipment

These are generally considered advanced techniques for recreational divers, but basic skills for professional divers. [5]

Logging the dive

The diver's log is a record of the diving experience, and professional divers are required to keep theirs up to date and correctly filled in. The diving supervisor is usually required to countersign each page of a professional diver's logbook to maintain it for legal use. Recreational logbooks are generally not required outside of training, but are recommended. They may be inspected by service providers as evidence of experience when applying for further training or applying to participate in dives requiring specific experience. Electronic logs are becoming more popular, and newer dive computers will download the dive data they collect automatically in a reasonably user-friendly format. The user must still input some information, such as the venue, dive buddy, and what was seen and done on the dive.

Diver rescue

Rescue training exercise Diver rescue - beaching.JPG
Rescue training exercise

Diver rescue is the process of avoiding or reducing further exposure to diving hazards and bringing a compromised diver to safety, [7] such as a boat or shore, where first aid can be administered and additional medical treatment is available. Rescue skills are considered by some agencies to be beyond the scope of entry level divers, [4] while others consider them entry level diving skills required as part of the professional skill set for a stand-by diver. [5] [6]

Diver rescue skills include: [8] [7]

More than one technique may be taught for some of these skills.

Dry suits

Skills necessary for the safe use of dry suits include:

Rebreather

Pre-dive leak checks on rebreathers US Navy 090423-N-4301H-044 Basic Underwater Demolition SEAL (BUD-S) candidates check their underwater breathing apparatuses for proper ventilation and safety before participating in dive training in Coronado Bay.jpg
Pre-dive leak checks on rebreathers

Rebreather skills are necessary when using a rebreather for recreational or technical diving. Due to the technical complexity of mixed gas rebreather design and construction, and the significantly larger number of possible failure modes compared with open circuit diving, the skill set is more complex and generally requires more training and practice to master. As with most diving equipment, skills are needed for preparation, in-water standard operation, emergencies, and after-use maintenance, all of which may involve details specific to the model of rebreather in use, though there are common principles involved.

Special applications

Sidemount diving is particularly appropriate for tight cave restrictions Left side view of sidemount diver in cave DSC 0082 Photo by Pete Nawrocky.JPG
Sidemount diving is particularly appropriate for tight cave restrictions

Special applications require additional skills. In many cases such skills can be shared across applications, with only a few specific to that application. Many underwater work and activity skills are not directly related to the use of scuba equipment. [8]

Example applications:

Training, assessment and certification

Scuba skills training is primarily directed by a registered or certified diving instructor. [13] Additional practice and skills maintenance are the diver's responsibility. Recreational divers may attend refresher courses, which may involve revisions to earlier practices. Service providers such as dive shops and charter boats may require a checkout dive for divers unfamiliar with the region, or who haven't dived for some time.

It is the individual diver's responsibility to maintain sufficient skill and fitness to dive safely and not endanger themselves or others, and to judge whether they are ready to handle the anticipated conditions.

Recreational diver training

Many recreational diver training organizations offer diver training. Successful completion is shown by the issuance of a "diving certification," also known as a "C-card," or qualification card.

Recreational diver training courses range from minor specialties which require one classroom session and an open water dive, and which may be completed in a day, to complex specialties which may take days to weeks, and require classroom sessions, confined water skills training and practice such as in a swimming pool, and open-water dives, followed by assessment of knowledge and skills.

The initial open-water training for a person who is medically fit to dive and a reasonably competent swimmer is relatively short. Many dive shops in popular holiday locations offer courses intended to teach a novice to dive in a few days. Other instructors and dive schools provide longer and more thorough training.

Diving instructors affiliated to a diving certification agency may work independently, or through a university, a dive club, a dive school or a dive shop. They offer courses that satisfy the standards of a certification organization.

Professional and technical diver training

Professional diver training is typically provided by schools affiliated to or approved by one or more commercial, scientific or other professional diver certification or registration organizations [13] [14] [5] Professional and technical diver training standards require a significantly higher skill level than recreational certification. Professional or technical training may include confidence training or stress training, where simulated emergencies are enacted, or unlikely contingencies are simulated, to develop divers' confidence in their abilities to safely manage contingencies. The amount of time spent on skill and confidence development is generally proportional to the length of the training program, as basic skills are usually learned fairly quickly.

Skills retention

Although many scuba skills are safety critical, most are straightforward and are easily retained once learned, given occasional practice. The routine skills that are exercised on most dives or every dive are usually well retained, but emergency skills may be seldom practiced outside of the training environment, and are consequently often poorly retained and inadequate in the face of a real emergency. Even in the training environment they are not often over-learned to the point of integrating with the diver's muscle memory. In many cases it is likely that if an emergency occurs during a dive under stressful conditions, the diver will be unable to manage the challenge safely. Refresher training is recommended by some training agencies when the diver has not dived for an arbitrary period of time, such as six months, but the actual need for relearning is not so easily identified. Checkout dives are a common requirement of service providers for divers without a convincing logbook showing recent appropriate experience.

Related Research Articles

<span class="mw-page-title-main">Scuba set</span> Self-contained underwater breathing apparatus

A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness or rigging by which it is carried and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge. In the looser sense, scuba set has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface-supplied diving systems and is allowed by the relevant legislation and code of practice.

<span class="mw-page-title-main">Ice diving</span> Underwater diving under ice

Ice diving is a type of penetration diving where the dive takes place under ice. Because diving under ice places the diver in an overhead environment typically with only a single entry/exit point, it requires special procedures and equipment. Ice diving is done for purposes of recreation, scientific research, public safety and other professional or commercial reasons.

<span class="mw-page-title-main">Buoyancy compensator (diving)</span> Equipment for controlling the buoyancy of a diver

A buoyancy compensator (BC), also called a buoyancy control device (BCD), stabilizer, stabilisor, stab jacket, wing or adjustable buoyancy life jacket (ABLJ), depending on design, is a type of diving equipment which is worn by divers to establish neutral buoyancy underwater and positive buoyancy at the surface, when needed.

<span class="mw-page-title-main">Scuba diving</span> Swimming underwater, breathing gas carried by the diver

Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The name scuba is an anacronym for "Self-Contained Underwater Breathing Apparatus" and was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, a gas blend with a higher oxygen content, known as enriched air or nitrox, has become popular due to the reduced nitrogen intake during long or repetitive dives. Also, breathing gas diluted with helium may be used to reduce the effects of nitrogen narcosis during deeper dives.

<span class="mw-page-title-main">Diver rescue</span> Rescue of a distressed or incapacitated diver

Diver rescue, usually following an accident, is the process of avoiding or limiting further exposure to diving hazards and bringing a diver to a place of safety. A safe place generally means a place where the diver cannot drown, such as a boat or dry land, where first aid can be administered and from which professional medical treatment can be sought. In the context of surface supplied diving, the place of safety for a diver with a decompression obligation is often the diving bell.

Buddy breathing is a rescue technique used in scuba diving "out-of-gas" emergencies, when two divers share one demand valve, alternately breathing from it. Techniques have been developed for buddy breathing from both twin-hose and single hose regulators, but to a large extent it has been superseded by safer and more reliable techniques using additional equipment, such as the use of a bailout cylinder or breathing through a secondary demand valve on the rescuer's regulator.

<span class="mw-page-title-main">Alternative air source</span> Emergency supply of breathing gas for an underwater diver

In underwater diving, an alternative air source, or more generally alternative breathing gas source, is a secondary supply of air or other breathing gas for use by the diver in an emergency. Examples include an auxiliary demand valve, a pony bottle and bailout bottle.

<span class="mw-page-title-main">Diving equipment</span> Equipment used to facilitate underwater diving

Diving equipment, or underwater diving equipment, is equipment used by underwater divers to make diving activities possible, easier, safer and/or more comfortable. This may be equipment primarily intended for this purpose, or equipment intended for other purposes which is found to be suitable for diving use.

<span class="mw-page-title-main">Ascending and descending (diving)</span> Procedures for safe ascent and descent in underwater diving

In underwater diving, ascending and descending is done using strict protocols to avoid problems caused by the changes in ambient pressure and the hazards of obstacles near the surface such as collision with vessels. Diver certification and accreditation organisations place importance on these protocols early in their diver training programmes. Ascent and descent are historically the times when divers are injured most often when failing to follow appropriate procedure.

<span class="mw-page-title-main">Emergency ascent</span> An ascent to the surface by a diver in an emergency

An emergency ascent is an ascent to the surface by a diver in an emergency. More specifically, it refers to any of several procedures for reaching the surface in the event of an out-of-air emergency, generally while scuba diving.

<span class="mw-page-title-main">Doing It Right (scuba diving)</span> Technical diving safety philosophy

Doing It Right (DIR) is a holistic approach to scuba diving that encompasses several essential elements, including fundamental diving skills, teamwork, physical fitness, and streamlined and minimalistic equipment configurations. DIR proponents maintain that through these elements, safety is improved by standardizing equipment configuration and dive-team procedures for preventing and dealing with emergencies.

<span class="mw-page-title-main">Surface-supplied diving skills</span> Skills and procedures required for the safe operation and use of surface-supplied diving equipment

Surface supplied diving skills are the skills and procedures required for the safe operation and use of surface-supplied diving equipment. Besides these skills, which may be categorised as standard operating procedures, emergency procedures and rescue procedures, there are the actual working skills required to do the job, and the procedures for safe operation of the work equipment other than diving equipment that may be needed.

Diving hazards are the agents or situations that pose a threat to the underwater diver or their equipment. Divers operate in an environment for which the human body is not well suited. They face special physical and health risks when they go underwater or use high pressure breathing gas. The consequences of diving incidents range from merely annoying to rapidly fatal, and the result often depends on the equipment, skill, response and fitness of the diver and diving team. The classes of hazards include the aquatic environment, the use of breathing equipment in an underwater environment, exposure to a pressurised environment and pressure changes, particularly pressure changes during descent and ascent, and breathing gases at high ambient pressure. Diving equipment other than breathing apparatus is usually reliable, but has been known to fail, and loss of buoyancy control or thermal protection can be a major burden which may lead to more serious problems. There are also hazards of the specific diving environment, and hazards related to access to and egress from the water, which vary from place to place, and may also vary with time. Hazards inherent in the diver include pre-existing physiological and psychological conditions and the personal behaviour and competence of the individual. For those pursuing other activities while diving, there are additional hazards of task loading, of the dive task and of special equipment associated with the task.

<span class="mw-page-title-main">Outline of underwater diving</span> Hierarchical outline list of articles related to underwater diving

The following outline is provided as an overview of and topical guide to underwater diving:

<span class="mw-page-title-main">Index of underwater diving</span> Alphabetical listing of underwater diving related topics

The following index is provided as an overview of and topical guide to underwater diving:

Diving procedures are standardised methods of doing things that are commonly useful while diving that are known to work effectively and acceptably safely. Due to the inherent risks of the environment and the necessity to operate the equipment correctly, both under normal conditions and during incidents where failure to respond appropriately and quickly can have fatal consequences, a set of standard procedures are used in preparation of the equipment, preparation to dive, during the dive if all goes according to plan, after the dive, and in the event of a reasonably foreseeable contingency. Standard procedures are not necessarily the only courses of action that produce a satisfactory outcome, but they are generally those procedures that experiment and experience show to work well and reliably in response to given circumstances. All formal diver training is based on the learning of standard skills and procedures, and in many cases the over-learning of the skills until the procedures can be performed without hesitation even when distracting circumstances exist. Where reasonably practicable, checklists may be used to ensure that preparatory and maintenance procedures are carried out in the correct sequence and that no steps are inadvertently omitted.

References

  1. 1 2 3 4 Egstrom, G.H. (1992). "Emergency air sharing". Journal of the South Pacific Underwater Medicine Society.
  2. "7 Signs You Need a Scuba Refresher". blog.padi.com. 2018-01-22. Archived from the original on 2022-02-10. Retrieved 2022-05-04.
  3. Page, The Scuba (2018-02-01). "When and Why Should You do a Scuba Refresher Course?". RUSHKULT. Archived from the original on 2023-02-09. Retrieved 2022-05-04.
  4. 1 2 "Minimum course standard for Open Water Diver training" (PDF). World Recreational Scuba Training Council. 1 October 2004. pp. 8–9. Archived (PDF) from the original on 17 October 2016. Retrieved 16 January 2017.
  5. 1 2 3 4 "International Diver Training Certification: Diver Training Standards, Revision 4" (PDF). International Diving Schools Association. 2009. Archived from the original (PDF) on 2016-03-03. Retrieved 9 September 2013.
  6. 1 2 3 4 5 6 Diving Advisory Board (October 2007). Class IV Training Standard (Revision 5.03 ed.). Pretoria: South African Department of Labour.
  7. 1 2 3 British Sub-Aqua Club (1987). Safety and Rescue for Divers. London: Stanley Paul. ISBN   0-09-171520-2.
  8. 1 2 3 4 5 6 7 8 9 Hanekom, Paul; Truter, Pieter (2007). Diver training handbook (Version 03 ed.). Cape Town: Research Diving Unit, University of Cape Town.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Barsky, Steven; Long, Dick; Stinton, Bob (1999). Dry Suit Diving (3rd ed.). Santa Barbara, CA.: Hammerhead Press. ISBN   0-9674305-0-X.
  10. 1 2 Busuttili, Mike; Holbrook, Mike; Ridley, Gordon; Todd, Mike, eds. (1985). "Open water training". Sport diving – The British Sub-Aqua Club Diving Manual. London: Stanley Paul & Co Ltd. pp. 120–135. ISBN   0-09-163831-3.
  11. "Recreational diving services — Requirements for the training of recreational scuba divers — Part 2: Level 2 — Autonomous diver (ISO 24801-2)". ISO. Archived from the original on 2016-06-17. Retrieved 2015-04-29.
  12. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mike Busuttili; Mike Holbrook; Gordon Ridley; Mike Todd, eds. (1985). Sport diving: The British Sub-Aqua Club Diving Manual (Revised ed.). London: Stanley Paul. ISBN   0-09-163831-3.
  13. 1 2 3 Diving Regulations 2009 of the South African Occupational Health and Safety Act, 1993. Government notice R41, Government Gazette #32907. Pretoria: Government Printer. 29 January 2010.
  14. 1 2 The Diving at Work Regulations 1997. Statutory Instruments 1997 No. 2776, Health and Safety. Archived from the original on 2022-11-28. Retrieved 2013-09-12.
  15. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 NOAA Diving Program (U.S.) (28 Feb 2001). Joiner, James T. (ed.). NOAA Diving Manual, Diving for Science and Technology (4th ed.). Silver Spring, Maryland: National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, National Undersea Research Program. ISBN   978-0-941332-70-5. CD-ROM prepared and distributed by the National Technical Information Service (NTIS)in partnership with NOAA and Best Publishing Company
  16. 1 2 3 4 Skwiot, Suzee (13 December 2021). "Negative Entry: What Is It & When to Do It". Scuba.com. Retrieved 20 April 2024.
  17. "5 Tips on Making A Negative Entry". www.deepbluedivecenter.com. 28 November 2022. Archived from the original on 31 May 2023. Retrieved 20 April 2024.
  18. Guimbellot, Barry; Guimbellot, Ruth. "'Have a Seat, Please': The Controlled Seated Entry". dtmag.com. Archived from the original on 28 October 2019. Retrieved 28 October 2019.
  19. 1 2 3 4 5 6 7 8 9 10 11 12 13 US Navy Diving Manual, 6th revision. United States: US Naval Sea Systems Command. 2006. Archived from the original on 2008-05-02. Retrieved 2008-06-08.
  20. Mitchell, Simon (August 2008). "Four: Carbon Dioxide Retention". In Mount, Tom; Dituri, Joseph (eds.). Exploration and Mixed Gas Diving Encyclopedia (1st ed.). Miami Shores, Florida: International Association of Nitrox Divers. pp. 279–286. ISBN   978-0-915539-10-9.
  21. 1 2 3 4 5 Cudel, Audrey (27 August 2021). "Breathing & Buoyancy control: Stop, Breathe, Think, and then Act". alertdiver.eu. Archived from the original on 5 April 2024. Retrieved 20 April 2024.
  22. Iacono, Jesse; Madigan, Samantha (31 October 2016). "The Complete Guide to Throwing Up Underwater". www.tdisdi.com. Archived from the original on 28 June 2022. Retrieved 20 April 2024.
  23. 1 2 3 4 5 Lippmann, John. "The Ups and Downs of Buoyancy Control". Divers Alert Network medical articles. Divers Alert Network S.E. Asia-Pacific. Archived from the original on 21 May 2016. Retrieved 23 May 2016.
  24. 1 2 3 4 5 6 7 8 9 10 11 12 13 Jablonski, Jarrod (2006). Doing it Right: The Fundamentals of Better Diving. High Springs, Florida: Global Underwater Explorers. ISBN   0-9713267-0-3.
  25. Liddiard, John (December 2006). "5 ways to better finning". www.divernet.com. Archived from the original on 24 September 2016. Retrieved 1 December 2016.
  26. Keller, Christophe (21 March 2021). "Sidestroke Swimming Technique – Part 2: Scissor Kick". www.enjoy-swimming.com. Archived from the original on 11 May 2021. Retrieved 11 May 2021.
  27. 1 2 3 Raymond, Kieth A; West, Brian; Cooper, Jeffrey S. (January 2021). Diving Buoyancy. Updated 2021 Jun 29. Treasure Island, FL.: StatPearls Publishing. PMID   29261960. Archived from the original on 2024-03-19. Retrieved 2021-12-29 via StatPearls [Internet]. CC-by-sa-4.0
  28. Agnew, J. (2003). Scuba Diver's Travel Companion. Guilford, CT.: The Globe Pequot Press. ISBN   0-7627-2668-7.
  29. Staff (2012). "Ocean Reef Products.GSM DC". Ocean Reef Group website. Ocean Reef Inc. Retrieved 11 May 2016.[ permanent dead link ]
  30. Staff (2016). "Aquacom". Drägerwerk AG & Co. KGaA. Archived from the original on 3 June 2016. Retrieved 11 May 2016.
  31. Larn, R; Whistler, R. (1993). Commercial Diving Manual. Newton Abbott: David & Charles. ISBN   0-7153-0100-4.
  32. Recreational Scuba Training Council (2005). "Common Hand Signals for Recreational Scuba Diving" (PDF). Jacksonville, FL.: Recreational Scuba Training Council, Inc. Archived (PDF) from the original on 2013-04-18. Retrieved 2013-09-13 via www.angelfire.com.
  33. von Maier, Robert (2002). Solo Diving, The Art of Underwater Self-Sufficiency (2nd ed.). Aqua Quest Publications. p.  128. ISBN   1-881652-28-9.
  34. Staff (4 March 2014). "CMAS Self-Rescue Diver". Standard Number: 2.B.31 / BOD no 181 ( 04-18-2013 ). CMAS. Archived from the original on 14 April 2017. Retrieved 13 April 2017.
  35. Staff (1 January 2018). "Solo Diver" (PDF). SDI Instructor Manual - Specialties Standards Version 18.0. Scuba Diving International. pp. 75–78. Archived (PDF) from the original on 30 June 2017. Retrieved 15 October 2017.
  36. "Valve Feather". www.youtube.com. SDI TDI ERDI PFI FRTI. Archived from the original on 6 January 2019. Retrieved 19 March 2024.
  37. "Decompression Diving 101". scubadiverlife.com. 22 April 2017. Archived from the original on 19 March 2024. Retrieved 19 March 2024.
  38. "Twinset / Doubles Skills 12 - How to Feather Deco Gas". www.youtube.com. Dark Horizon Diving. Archived from the original on 19 March 2024. Retrieved 19 March 2024.
  39. Ward, Mike (9 April 2014). Scuba Regulator Freezing: Chilling Facts & Risks Associated with Cold Water Diving (Report). Panama Beach, Fl.: Dive Lab, Inc.
  40. 1 2 3 4 Harlow, Vance (1999). Scuba regulator maintenance and repair. Warner, New Hampshire: Airspeed Press. ISBN   0-9678873-0-5.
  41. 1 2 Brylske, Alex. Young, Mark (ed.). "Buddy Breathing: Is it Time for Change?". Dive Training. Archived from the original on 26 September 2023. Retrieved 23 April 2024. originally published in Dive Training, November 1993.
  42. "CMAS Self-Rescue Diver Training Programme Minimum Course Content - 1.2.13 Tethered-Ascent – Self-Rescue". CMAS International Diver Training Standards and Procedures Manual Syllabus Number: 3.B.31 / BOD no 181 ( 04-18-2013 ). CMAS. 4 March 2014. Archived from the original on 14 April 2017. Retrieved 13 April 2017.
  43. UK Divers (October 16, 2007). "Underwater Navigation". UKDivers.net. Archived from the original on March 13, 2016. Retrieved 2016-05-16. Navigation by reference to terrain features, both natural and artificial, usually with the aid of an appropriate chart.
  44. Scully, Reg (April 2013). "Topic 7: Underwater Navigation". CMAS-ISA Three Star Diver Theoretical Manual (1st ed.). Pretoria: CMAS-Instructors South Africa. ISBN   978-0-620-57025-1.
  45. "Recommendations Concerning the Use of Surface Marker Buoys" (PDF). www.bdsg.org. British Diving Safety Group. Archived from the original (PDF) on 29 December 2016. Retrieved 7 March 2016.
  46. Sheck Exley (1977). Basic Cave Diving: A Blueprint for Survival. National Speleological Society Cave Diving Section. ISBN   99946-633-7-2.
  47. Diving Regulations 2001 of the Occupational Health and Safety Act 85 of 1993 – Regulations and Notices – Regulation Gazette No. 7243. Vol. 438. Pretoria: Government Printer. 11 January 2001.
  48. 1 2 "Deep Life Design Team: databases and analysis of rebreather accident data". Deeplife.co.uk. Archived from the original on 2012-08-27. Retrieved 2013-07-31.

See also