SeaPerch

Last updated

The SeaPerch is an educational tool and kit that allows elementary, middle, and high-school students to construct a simple, remotely operated underwater vehicle, or Remotely Operated Vehicle (ROV), from polyvinyl chloride (PVC) pipe and other readily made materials. The SeaPerch program is a curriculum designed program that teaches students basic skills in ship and submarine design and encourages students to explore naval architecture and marine and ocean engineering concepts. It was inspired by the 1997 book,Build Your Own Underwater Robot and other Wet Projects, by Harry Bohm and Vickie Jensen. [1] The Massachusetts Institute of Technology Sea Grant (MITSG) College Program created the SeaPerch initiative in 2003, and it is sponsored by the Office of Naval Research, as part of the National Naval Responsibility for Naval Engineering (NNRNE) to find the next generation of Naval Architects, Marine Engineers, Naval Engineers, and Ocean Engineers. [2]

Contents

Goal

The Goal of SeaPerch is to build and sustain a long-term effort to address the problem of decreasing college enrollments in engineering and technical programs by introducing elementary, middle, and high school students to science and engineering through hands-on activities. [2]

History

The SeaPerch Remotely Operated Vehicle (ROV) educational program was inspired by the 1997 book, Build Your Own Underwater Robot and other Wet Projects, by Harry Bohm and Vickie Jensen. [1]

MIT

In 1997, Like a BAKA introduced SeaPerch to the Ocean Engineering program at Massachusetts Institute of Technology (MIT), in order to interest more students in majoring in Ocean Engineering. Realizing the potential of SeaPerch to reach younger students, the MIT Sea Grant (MITSG) College Program created the SeaPerch initiative in 2003, sponsored by the Office of Naval Research. The individuals responsible for the MIT Sea Grant were Dr. Chryssostomos Chryssostomidis, MITSG Director, and Brandy Wilbur, Educational Coordinator. [1]

SNAME

In late 2007, the Office of Naval Research (ONR) tasked the Society of Naval Architects and Marine Engineers (SNAME) to research ways to expand and enhance the SeaPerch initiative as part of the ONR National Naval Responsibility for Naval Engineering Outreach effort. [1]

Teaching SeaPerch

SeaPerch provides free teacher training to a school district or region, training the teachers and sharing additional classroom usage ideas. Continuing education and/or Professional credits may be offered, as educators are often required to attend workshops throughout the year.

Curriculum

Teachers are provided with an established curriculum that was designed to meet many of the national learning standards identified by the government. With one project, many with one project, schools are able to teach many of the concepts required for their grade level: an efficient use of time, and a fun, hands-on activity for students. Some of the concepts the students learn during the build include:

SeaPerch Learning Concepts [3]
Ship and sub design
Buoyancy/Displacement
Propulsion
Soldering/tool safety
Vectors
Circuits and switches
Ergonomics
Depth measurement
Biological sampling
Attenuation of light
Moment arm, basic physics of motion

In addition to the curriculum which promotes naval and marine engineering, and naval architects, the SeaPerch program also focuses on presenting the possibilities of technical careers to minorities and girls – underrepresented populations. [4]

SeaPerch Challenges

At the completion of the SeaPerch construction, students are encouraged to test their vehicles, deploy them on “missions”, and compete in culminating event, the SeaPerch Challenge. The SeaPerch Challenge is a one-day district-wide competition in which students are given the opportunity to take what they have learned throughout the curriculum to the next level. The challenge fosters an end goal, rewards sportsmanship, spirit and design skills, as well as mastery of the concepts. Events at the challenge can include:

SeaPerch Challenge Events
Vehicle Performance- Maneuvering and Recovery
Innovative Design – Optional
Team Presentations – Oral Presentations to Judges
Design Notebooks – Document planning, design, construction, testing and learning
Team Spirit and Sportsmanship – At the event

The first SeaPerch event that took place was the Prince William County Public Schools SeaPerch ROV competition day, which attracted more 150 students forming 42 teams from nine schools, at April 26, 2008 held at George Mason University Fairfax campus (Va.). This was reportedly the first-ever sub-sea robotic competition in the state of Virginia. [5]

Stakeholder Conference

The first annual SeaPerch Stakeholders Conference was held August 4–6, 2009 in Honolulu, Hawaii. The Office of Naval Research, in cooperation with The Society of Naval Architects and Marine Engineers hosted the inaugural event to bring those interested in the underwater robotics program together to exchange ideas and information and to network. [6]

Statistics

SeaPerch has provided over 4,000 students with the opportunity to learn about underwater robotics by building a SeaPerch. Since 2009, over 230 teachers have been trained, and will be taking SeaPerch to their classrooms in upcoming semesters. Within the 2009 calendar year, close to 900 SeaPerch kits have been built and shipped to schools and educators across the country. Currently[ when? ], 118 schools in eight states are participating across the United States in Alaska, Hawaii, Washington, Georgia, Pennsylvania, Maryland, Connecticut and Virginia. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Woods Hole Oceanographic Institution</span> Private, nonprofit research and education facility

The Woods Hole Oceanographic Institution is a private, nonprofit research and higher education facility dedicated to the study of marine science and engineering.

<span class="mw-page-title-main">Remotely operated underwater vehicle</span> A tethered underwater mobile device operated by a remote crew

A remotely operated underwater vehicle is a tethered underwater mobile device, also commonly called an underwater robot.

<i>Kaikō</i> ROV Japanese remotely operated underwater vehicle for deep sea exploration

Kaikō was a remotely operated underwater vehicle (ROV) built by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) for exploration of the deep sea. Kaikō was the second of only five vessels ever to reach the bottom of the Challenger Deep, as of 2019. Between 1995 and 2003, this 10.6 ton unmanned submersible conducted more than 250 dives, collecting 350 biological species, some of which could prove to be useful in medical and industrial applications. On 29 May 2003, Kaikō was lost at sea off the coast of Shikoku Island during Typhoon Chan-Hom, when a secondary cable connecting it to its launcher at the ocean surface broke.

<span class="mw-page-title-main">Office of Naval Research</span> Office within the United States Department of the Navy

The Office of Naval Research (ONR) is an organization within the United States Department of the Navy responsible for the science and technology programs of the U.S. Navy and Marine Corps. Established by Congress in 1946, its mission is to plan, foster, and encourage scientific research to maintain future naval power and preserve national security. It carries this out through funding and collaboration with schools, universities, government laboratories, nonprofit organizations, and for-profit organizations, and overseeing the Naval Research Laboratory, the corporate research laboratory for the Navy and Marine Corps. NRL conducts a broad program of scientific research, technology and advanced development.

<span class="mw-page-title-main">Scorpio ROV</span> Work class remotely operated underwater vehicle

The Scorpio is a brand of underwater submersible Remotely Operated Vehicle (ROV) manufactured by Perry Tritech used by sub-sea industries such as the oil industry for general operations, and by the Royal Navy and the United States Navy for submarine rescue services. Originally developed by AMETEK Straza of El Cajon, United States, they were subsequently developed by Perry Tritech. Although the design of the original Scorpio is over several decades old, it forms the basis for a current generation of Scorpio-branded ROVs. Scorpio ROVs are named in a sequence following the order of manufacture, such as "Scorpio 17" or "Scorpio 45" which refer to specific ROVs.

<span class="mw-page-title-main">Monterey Bay Aquarium Research Institute</span> American oceanographic research institute

The Monterey Bay Aquarium Research Institute (MBARI) is a private, non-profit oceanographic research center in Moss Landing, California. MBARI was founded in 1987 by David Packard, and is primarily funded by the David and Lucile Packard Foundation. Christopher Scholin serves as the institute's president and chief executive officer, managing a work force of approximately 220 scientists, engineers, and operations and administrative staff.

<span class="mw-page-title-main">Marine engineering</span> Engineering and design of shipboard systems

Marine engineering is the engineering of boats, ships, submarines, and any other marine vessel. Here it is also taken to include the engineering of other ocean systems and structures – referred to in certain academic and professional circles as “ocean engineering.”

<span class="mw-page-title-main">Unmanned underwater vehicle</span> Submersible vehicles that can operate underwater without a human occupant

Unmanned underwater vehicles (UUV), sometimes known as underwater drones, are submersible vehicles that can operate underwater without a human occupant. These vehicles may be divided into two categories: remotely operated underwater vehicles (ROUVs) and autonomous underwater vehicles (AUVs). ROUVs are remotely controlled by a human operator. AUVs are automated and operate independently of direct human input.

Subsea technology involves fully submerged ocean equipment, operations, or applications, especially when some distance offshore, in deep ocean waters, or on the seabed. The term subsea is frequently used in connection with oceanography, marine or ocean engineering, ocean exploration, remotely operated vehicle (ROVs) autonomous underwater vehicles (AUVs), submarine communications or power cables, seafloor mineral mining, oil and gas, and offshore wind power.

Intervention AUV or I-AUV is a type of autonomous underwater vehicle. Its characteristic feature is that it is capable of autonomous interventions on the subsea installations, a task usually carried out by remotely operated underwater vehicles (ROVs) or human divers.

<i>Nereus</i> (underwater vehicle) Hybrid remotely operated or autonomous underwater vehicle

Nereus was a hybrid uncrewed autonomous underwater vehicle built by the Woods Hole Oceanographic Institution (WHOI). Constructed as a research vehicle to operate at depths of up to 11,000 metres (36,000 ft), it was designed to explore Challenger Deep, the deepest surveyed point in the global ocean. Nereus, named for Greek sea titan Nereus through a nationwide contest of high school and college students, began its deep sea voyage to Challenger Deep in May 2009 and reached the bottom on May 31, 2009.

The Association for Uncrewed Vehicle Systems International, also known as AUVSI, is an international nonprofit organization dedicated to promoting and supporting the unmanned systems and robotics industry through communication, education and leadership.

Oceaneering International, Inc. is a subsea engineering and applied technology company based in Houston, Texas, U.S. that provides engineered services and hardware to customers who operate in marine, space, and other environments.

The National Institute for Undersea Science and Technology (NIUST) was established in 2002 within the National Oceanic and Atmospheric Administration (NOAA) for the purpose of advancing undersea research. NOAA's undersea research program is carried out through six regional research centers and a national institute based at academic institutions with established programs in marine science and technology.

The Chinese 8A4 class ROUV is a remotely operated underwater vehicle (ROUV) used to perform various underwater tasks, ranging from oil platform service to salvage and rescue missions. The 8A4 is a member of a series of related ROUVs developed by the Shenyang Institute of Automation (SIA) in the People's Republic of China (PRC). The predecessor to the 8A4 was the RECON-IV, an improved version of the American RECON-III. The 8A4 itself is an upgraded version of the American AMETEK 2006, and the 7B8 is an improved version of the 8A4.

Sea Dragon-class remotely operated underwater vehicles (ROUVs) are a class of Chinese remotely operated vehicle (ROV) used to perform various underwater tasks such as oil platform service, salvage, and rescue missions. Following the successful development of the original Sea Dragon (海龙), a series of ROUVs based on it have been developed. The original model had a diving capability up to 3,500 meters, but subsequent models were designed to meet a variety of operating conditions.

ABISMO is a remotely operated underwater vehicle (ROV) built by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) for exploration of the deep sea. It is the only remaining ROV rated to 11,000-meters, ABISMO is intended to be the permanent replacement for Kaikō, a ROV that was lost at sea in 2003.

Atlantis ROV Team is a high-school underwater robotics team from Whidbey Island, Washington, United States competing in the MATE International ROV Competition. They are the 2013 Pacific Northwest Champions and are ranked 11th internationally.

<i>Spare Parts</i> (2015 film) 2015 film by Sean McNamara

Spare Parts is a 2015 drama film directed by Sean McNamara and produced by David Alpert, Rick Jacobs, Leslie Kolins Small, George Lopez, and Ben Odell. It is based on the Wired magazine article "La Vida Robot" by Joshua Davis, about the true story of a group of students from a mainly Latino high school, who won first place over M.I.T. in the 2004 MATE ROV competition. The film was released by Lions Gate Entertainment on January 16, 2015.

Diving support equipment is the equipment used to facilitate a diving operation. It is either not taken into the water during the dive, such as the gas panel and compressor, or is not integral to the actual diving, being there to make the dive easier or safer, such as a surface decompression chamber. Some equipment, like a diving stage, is not easily categorised as diving or support equipment, and may be considered as either.

References