Brian Andrew Hills, born 19 March 1934 in Cardiff, Wales, [1] died 13 January 2006 in Brisbane, Queensland, [1] was a physiologist who worked on decompression theory.
Early decompression work was done with Hugh LeMessurier's aeromedicine group at the department of Physiology, University of Adelaide. [2] His "thermodynamic decompression model" was one of the first models in which decompression is controlled by the volume of gas bubbles coming out of solution. In this model, pain only DCS is modelled by a single tissue which is diffusion-limited for gas uptake, and bubble-formation during decompression causes "phase equilibration" of partial pressures between dissolved and free gases. The driving mechanism for gas elimination in this tissue is inherent unsaturation, also called partial pressure vacancy or the oxygen window, where oxygen metabolised is replaced by more soluble carbon dioxide. This model was used to explain the effectiveness of the Torres Strait Islands pearl divers' empirically developed decompression schedules, which used deeper decompression stops and less overall decompression time than the current naval decompression schedules. This trend to deeper decompression stops has become a feature of more recent decompression models. [2]
Hills made a significant contribution to the mainstream scientific literature of some 186 articles between 1967 and 2006. The first 15 years of this contribution are mostly related to decompression theory. [2] Other contributions to decompression science include the development of two early decompression computers, a method to detect tissue bubbles using electrical impedance, the use of kangaroo rats as animal models for decompression sickness, theoretical and experimental work on bubble nucleation, inert gas uptake and washout, acclimatisation to decompression sickness, and isobaric counterdiffusion. [2]
Hills was introduced to the problems of bubble formation in decompressing divers in 1963 by Hugh LeMessurier of the Physiology Department of Adelaide University. Shortly thereafter he switched the topic of his Ph.D. thesis from bubble formation in nylon melts to bubble formation in deep sea divers. [3]
The pearl shell industry centred around Broome had collapsed recently as the button industry switched to plastics and the cultured pearl industry was seen as an opportunity to keep a profitable industry in the far North of Australia. The first pearl farming venture had just been set up at Kuri Bay as a three-way arrangement between a New York company which marketed the product, Japanese experts on pearl seeding and an Australian company which supplied the wild oysters. Two divers died and the Department of Primary Industry (DPI) in Canberra requested the Royal Australian Navy to investigate. The Navy report concluded that the pearl divers were not following the recommendations of the navy diving manual, and in particular were not following Haldanian decompression procedures, standard at the time. The diving company replied that the navy tables required so much decompression time that they were not financially viable. [3]
The DPI contracted LeMessurier and Hills to find out what the pearl divers were actually doing. They arrived in Broome just in time to document the pearling industry's empirically derived decompression procedures developed over the precious century during the boom period of pearl shell collection. From 1890 to 1950 there had been a pearling fleet of up to 800 luggers operating out of Broome, each with two divers. In 1963 there were only 8 luggers still operating, but the divers still used the decompression procedures evolved by trial and error over the previous century. Pearl divers were paid according to the quantity of pearl shell they harvested, and this was a strong incentive to minimize unproductive decompression time. There was no evidence of any medical, mathematical or scientific input to these purely trial and error derived decompression procedures. The price paid by their predecessors was over 3,000 deaths, many more cases of residual neurological injury and an unknown number of cases of limb bends. LeMessurier and Hills found that the pearl divers could decompress, asymptomatically in most cases, in two thirds of the time prescribed by the US Navy air tables. They concluded that the success of the procedures was due to the much deeper initial decompression stops used by the pearl divers. [3]
Hills realised that there was a discrepancy between the wording of the Haldane calculations and the equations used to produce tables. The Haldane and subsequent tables assumed that the asymptomatic decompressed diver must be bubble-free, and claims to be the first to appreciate the different mathematical models required to calculate decompression tables to take into account the presence of the gas phase. This led to the "Thermodynamic" or "Zero-supersaturation" approach to formulating decompression schedules which provided a scientific basis on which profiles resembling those of the pearl divers could be produced. They reported to Canberra that the pearl divers had empirically devised better decompression methods than the navies, but they needed better instrumentation for measuring depth. The DPI allowed the Australian company to continue using its economically viable diving schedules which helped enable the cultured pearl industry to survive its early days and progress to become a flourishing industry. Deep diving is no longer an important part of the cultured pearl industry as it became possible to breed oysters in captivity. [3]
During his time at Adelaide Hills also realised that the metabolic consumption of oxygen produced what he called "inherent unsaturation" in a tissue at steady state, and that this could provide a driving mechanism for inert gas elimination during decompression. This was independently deduced by Albert R. Behnke, who called it the "oxygen window" for decompression. [3]
Hills spent a short sabbatical at Gosport at the invitation of the Royal Navy during which time he used their animal facility to produce results supporting introducing much deeper stops than advocated by 'Haldanian' calculation methods or the U.S. Navy variations thereof. This resulted in the RN adding the time spent at 10 feet to the 20-foot stop for air dives and surfacing directly from 20 feet. This is claimed to have reduced the R.N. bends rate by 75%. [3]
As Associate Professor of Surgery assigned to the Hyperbaric Unit at Duke University, Hills worked on testing and developing tables for much deeper dives on heliox for use in the offshore oil which industry. At Duke he discovered the ability of dissolved gases to induce osmosis and found that decompression bubbles in many tissues were coated by the same surface-active phospholipid (SAPL) known as surfactant in the lung. [3]
While Professor of Occupational Medicine at Dundee and Aberdeen Universities, and as a consultant to several diving companies, Hills found that problematic diving schedules table could often be fixed by introducing one or two short deeper stops at the start of decompression rather than the currently popular practice of adding even more time to a long 10 foot stop, which is consistent with pearl diving practice. [3]
In later years his research was focused on SAPL which was found to be a lubricant in joints, a corrosion inhibitor in the stomach, possibly the substance masking irritant receptors in the bronchi, the lack of which causes asthma, and at other sites where bubble formation was detected in divers. While searching for SAPL as lamellar bodies they were also found in the spinal cord where such nuclei could be conducive to bubble formation in divers. [3]
{{cite web}}
: CS1 maint: unfit URL (link){{cite journal}}
: CS1 maint: unfit URL (link)Decompression sickness is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent from underwater diving, but can also result from other causes of depressurisation, such as emerging from a caisson, decompression from saturation, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.
Decompression Illness (DCI) comprises two different conditions caused by rapid decompression of the body. These conditions present similar symptoms and require the same initial first aid. Scuba divers are trained to ascend slowly from depth to avoid DCI. Although the incidence is relatively rare, the consequences can be serious and potentially fatal, especially if untreated.
Saturation diving is diving for periods long enough to bring all tissues into equilibrium with the partial pressures of the inert components of the breathing gas used. It is a diving mode that reduces the number of decompressions divers working at great depths must undergo by only decompressing divers once at the end of the diving operation, which may last days to weeks, having them remain under pressure for the whole period. A diver breathing pressurized gas accumulates dissolved inert gas used in the breathing mixture to dilute the oxygen to a non-toxic level in the tissues, which can cause potentially fatal decompression sickness if permitted to come out of solution within the body tissues; hence, returning to the surface safely requires lengthy decompression so that the inert gases can be eliminated via the lungs. Once the dissolved gases in a diver's tissues reach the saturation point, however, decompression time does not increase with further exposure, as no more inert gas is accumulated.
Diving medicine, also called undersea and hyperbaric medicine (UHB), is the diagnosis, treatment and prevention of conditions caused by humans entering the undersea environment. It includes the effects on the body of pressure on gases, the diagnosis and treatment of conditions caused by marine hazards and how relationships of a diver's fitness to dive affect a diver's safety. Diving medical practitioners are also expected to be competent in the examination of divers and potential divers to determine fitness to dive.
Diving disorders, or diving related medical conditions, are conditions associated with underwater diving, and include both conditions unique to underwater diving, and those that also occur during other activities. This second group further divides conditions caused by exposure to ambient pressures significantly different from surface atmospheric pressure, and a range of conditions caused by general environment and equipment associated with diving activities.
In diving and decompression, the oxygen window is the difference between the partial pressure of oxygen (PO2) in arterial blood and the PO2 in body tissues. It is caused by metabolic consumption of oxygen.
In physiology, isobaric counterdiffusion (ICD) is the diffusion of different gases into and out of tissues while under a constant ambient pressure, after a change of gas composition, and the physiological effects of this phenomenon. The term inert gas counterdiffusion is sometimes used as a synonym, but can also be applied to situations where the ambient pressure changes. It has relevance in mixed gas diving and anesthesiology.
Captain Albert Richard Behnke Jr. USN (ret.) was an American physician, who was principally responsible for developing the U.S. Naval Medical Research Institute. Behnke separated the symptoms of Arterial Gas Embolism (AGE) from those of decompression sickness and suggested the use of oxygen in recompression therapy.
Albert Alois Bühlmann was a Swiss physician who was principally responsible for a number of important contributions to decompression science at the Laboratory of Hyperbaric Physiology at the University Hospital in Zürich, Switzerland. His impact on diving ranged from complex commercial and military diving to the occasional recreational diver. He is held in high regard for his professional ethics and attention to his research subjects.
Hyperbaric nursing is a nursing specialty involved in the care of patients receiving hyperbaric oxygen therapy. The National Board of Diving and Hyperbaric Medical Technology offers certification in hyperbaric nursing as a Certified Hyperbaric Registered Nurse (CHRN). The professional nursing organization for hyperbaric nursing is the Baromedical Nurses Association.
The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth. It is also the process of elimination of dissolved inert gases from the diver's body which accumulate during ascent, largely during pauses in the ascent known as decompression stops, and after surfacing, until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their exposure to pressure and the breathing gas in use. A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress. Divers using an atmospheric diving suit do not need to decompress as they are never exposed to high ambient pressure.
To prevent or minimize decompression sickness, divers must properly plan and monitor decompression. Divers follow a decompression model to safely allow the release of excess inert gases dissolved in their body tissues, which accumulated as a result of breathing at ambient pressures greater than surface atmospheric pressure. Decompression models take into account variables such as depth and time of dive, breathing gasses, altitude, and equipment to develop appropriate procedures for safe ascent.
Decompression in the context of diving derives from the reduction in ambient pressure experienced by the diver during the ascent at the end of a dive or hyperbaric exposure and refers to both the reduction in pressure and the process of allowing dissolved inert gases to be eliminated from the tissues during this reduction in pressure.
Decompression theory is the study and modelling of the transfer of the inert gas component of breathing gases from the gas in the lungs to the tissues and back during exposure to variations in ambient pressure. In the case of underwater diving and compressed air work, this mostly involves ambient pressures greater than the local surface pressure, but astronauts, high altitude mountaineers, and travellers in aircraft which are not pressurised to sea level pressure, are generally exposed to ambient pressures less than standard sea level atmospheric pressure. In all cases, the symptoms caused by decompression occur during or within a relatively short period of hours, or occasionally days, after a significant pressure reduction.
Compression arthralgia is pain in the joints caused by exposure to high ambient pressure at a relatively high rate of compression, experienced by underwater divers. Also referred to in the U.S. Navy Diving Manual as compression pains.
The thermodynamic model was one of the first decompression models in which decompression is controlled by the volume of gas bubbles coming out of solution. In this model, pain only DCS is modelled by a single tissue which is diffusion-limited for gas uptake and bubble-formation during decompression causes "phase equilibration" of partial pressures between dissolved and free gases. The driving mechanism for gas elimination in this tissue is inherent unsaturation, also called partial pressure vacancy or the oxygen window, where oxygen metabolised is replaced by more soluble carbon dioxide. This model was used to explain the effectiveness of the Torres Straits Island pearl divers empirically developed decompression schedules, which used deeper decompression stops and less overall decompression time than the current naval decompression schedules. This trend to deeper decompression stops has become a feature of more recent decompression models.
The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure. It involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.
Inner ear decompression sickness, (IEDCS) or audiovestibular decompression sickness is a medical condition of the inner ear caused by the formation of gas bubbles in the tissues or blood vessels of the inner ear. Generally referred to as a form of decompression sickness, it can also occur at constant pressure due to inert gas counterdiffusion effects.
{{cite journal}}
: CS1 maint: unfit URL (link)