Scuba set

Last updated
Scuba set
Diver on the wreck of the Aster PB182648.JPG
Diving with a recreational open-circuit scuba set
AcronymScuba
Other names
  • Scuba gear
  • Open-circuit scuba
  • Diving rebreather
  • Aqualung
  • Bailout set
UsesProviding an underwater diver with an autonomous breathing gas supply

A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness or rigging by which it is carried and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge. In the looser sense, scuba set has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface-supplied diving systems and is allowed by the relevant legislation and code of practice.

Contents

Two basic functional variations of scuba are in general use: open-circuit-demand, and rebreather. In open-circuit demand scuba, the diver expels exhaled breathing gas to the environment, and each breath is delivered at ambient pressure, on demand, by a diving regulator, which reduces the pressure from the storage cylinder. The breathing gas is supplied through a demand valve; when the diver inhales, they reduce the pressure in the demand valve housing, thus drawing in fresh gas. In rebreather scuba, the system recycles the exhaled gas, removes carbon dioxide, and compensates for the used oxygen before the diver is supplied with gas from the breathing circuit. The amount of gas lost from the circuit during each breathing cycle depends on the design of the rebreather and depth change during the breathing cycle. Gas in the breathing circuit is at ambient pressure, and stored gas is provided through regulators or injectors, depending on the design.

Within these systems, various mounting configurations may be used to carry the scuba set, depending on application and preference. These include: back mount, which is generally used for recreational scuba and for bailout sets for surface supplied diving; side-mount, which is popular for tight cave penetrations; sling mount, used for stage-drop sets; decompression gas and bailout sets where the main gas supply is back-mounted; and various non-standard carry systems for special circumstances.

The most immediate risk associated with scuba diving is drowning due to a failure of the breathing gas supply. This may be managed by diligent monitoring of remaining gas, adequate planning and provision of an emergency gas supply carried by the diver in a bailout cylinder or supplied by the diver's buddy, and the skills required to manage the gas sources during the emergency.

Etymology

The word SCUBA was coined in 1952 by Major Christian Lambertsen who served in the U.S. Army Medical Corps from 1944 to 1946 as a physician. [1] Lambertsen first called the closed-circuit rebreather apparatus he had invented "Laru", an (acronym for Lambertsen Amphibious Respiratory Unit) but, in 1952, rejected the term "Laru" for "SCUBA" ("Self-Contained Underwater Breathing Apparatus"). [2] Lambertsen's invention, for which he held several patents registered from 1940 to 1989, was a rebreather and is different from the open-circuit diving regulator and diving cylinder assemblies also commonly referred to as scuba. [3]

Open-circuit-demand scuba is a 1943 invention by the Frenchmen Émile Gagnan and Jacques-Yves Cousteau, but in the English language Lambertsen's acronym has become common usage and the name Aqua-Lung (often spelled "aqualung"), coined by Cousteau for use in English-speaking countries, [4] has fallen into secondary use. As with radar, the acronym scuba has become so familiar that it is generally not capitalized and is treated as an ordinary noun. For example, it has been translated into the Welsh language as sgwba.[ citation needed ]

Although the term was originally an acronym, "scuba" is currently used to refer to the apparatus or the practice of diving using the apparatus, either alone as a common noun, or as an adjective in scuba set and scuba diving respectively. It is also used as an adjective referring to equipment or activity relating to diving using self-contained breathing apparatus.[ citation needed ]

Application

A diver uses a self-contained underwater breathing apparatus (scuba) to breathe underwater. Scuba provides the diver with the advantages of mobility and horizontal range far beyond the reach of an umbilical hose attached to surface-supplied diving equipment (SSDE). [5]

Unlike other modes of diving, which rely either on breath-hold or on breathing gas supplied under pressure from the surface, scuba divers carry their own source of breathing gas, usually filtered compressed air, [6] allowing them greater freedom of movement than with an air line or diver's umbilical and longer underwater endurance than breath-hold. Scuba diving may be done recreationally or professionally in a number of applications, including scientific, military and public safety roles, but most commercial diving uses surface-supplied diving equipment for the main gas supply when this is practicable. Surface supplied divers may be required to carry scuba as an emergency breathing gas supply to get them to safety in the event of a failure of surface gas supply. [5] [7] [8]

There are divers who work, full or part-time, in the recreational diving community as instructors, assistant instructors, divemasters and dive guides. In some jurisdictions the professional nature, with particular reference to responsibility for health and safety of the clients, of recreational diver instruction, dive leadership for reward and dive guiding is recognised and regulated by national legislation. [8]

Other specialist areas of scuba diving include military diving, with a long history of military frogmen in various roles. Their roles include direct combat, infiltration behind enemy lines, placing mines or using a manned torpedo, bomb disposal or engineering operations. In civilian operations, many police forces operate police diving teams to perform "search and recovery" or "search and rescue" operations and to assist with the detection of crime which may involve bodies of water. In some cases search and rescue diving teams may also be part of a fire department, paramedical service or lifeguard unit, and may be classed as public service diving. [8]

There are also professional divers involved with the underwater environment, such as underwater photographers or underwater videographers, who document the underwater world, or scientific diving, including marine biology, geology, hydrology, oceanography and underwater archaeology. [7] [8]

The choice between scuba and surface supplied diving equipment is based on both legal and logistical constraints. Where the diver requires mobility and a large range of movement, scuba is usually the choice if safety and legal constraints allow. Higher risk work, particularly in commercial diving, may be restricted to surface supplied equipment by legislation and codes of practice. [8] [9]

Alternatives to scuba for diving

There are alternative methods that a person can use to survive and function while underwater, currently including:

Operation

Breathing from scuba is mostly a straightforward matter. Under most circumstances it differs very little from normal surface breathing. In the case of a full-face mask, the diver may usually breathe through the nose or mouth as preferred, and in the case of a mouth held demand valve, the diver will have to hold the mouthpiece between the teeth and maintain a seal around it with the lips. Over a long dive this can induce jaw fatigue, and for some people, a gag reflex. Various styles of mouthpiece are available off the shelf or as customised items, and one of them may work better if either of these problems occur.

The frequently quoted warning against holding one's breath on scuba is a gross oversimplification of the actual hazard. The purpose of the admonition is to ensure that inexperienced divers do not accidentally hold their breath while surfacing, as the expansion of gas in the lungs could over-expand the lung air spaces and rupture the alveoli and their capillaries, allowing lung gases to get into the pulmonary return circulation, the pleura, or the interstitial areas near the injury, where it could cause dangerous medical conditions. Holding the breath at constant depth for short periods with a normal lung volume is generally harmless, providing there is sufficient ventilation on average to prevent carbon dioxide buildup, and is done as a standard practice by underwater photographers to avoid startling their subjects. Holding the breath during descent can eventually cause lung squeeze, and may allow the diver to miss warning signs of a gas supply malfunction until it is too late to remedy.

Skilled open circuit divers can and will make small adjustments to buoyancy by adjusting their average lung volume during the breathing cycle. This adjustment is generally in the order of a kilogram (corresponding to a litre of gas), and can be maintained for a moderate period, but it is more comfortable to adjust the volume of the buoyancy compensator over the longer term.

The practice of shallow breathing or skip breathing in an attempt to conserve breathing gas should be avoided as it tends to cause a carbon dioxide buildup, which can result in headaches and a reduced capacity to recover from a breathing gas supply emergency. The breathing apparatus will generally increase dead space by a small but significant amount, and cracking pressure and flow resistance in the demand valve will cause a net work of breathing increase, which will reduce the diver's capacity for other work. Work of breathing and the effect of dead space can be minimised by breathing relatively deeply and slowly. These effects increase with depth, as density and friction increase in proportion to the increase in pressure, with the limiting case where all the diver's available energy may be expended on simply breathing, with none left for other purposes. This would be followed by a buildup in carbon dioxide, causing an urgent feeling of a need to breathe, and if this cycle is not broken, panic and drowning are likely to follow. The use of a low density inert gas, typically helium, in the breathing mixture can reduce this problem, as well as diluting the narcotic effects of the other gases.[ citation needed ]

Breathing from a rebreather is much the same, except that the work of breathing is affected mainly by flow resistance in the breathing loop. This is partly due to the carbon dioxide absorbent in the scrubber, and is related to the distance the gas passes through the absorbent material, and the size of the gaps between the grains, as well as the gas composition and ambient pressure. Water in the loop can greatly increase the resistance to gas flow through the scrubber. There is even less point in shallow or skip breathing on a rebreather as this does not even conserve gas, and the effect on buoyancy is negligible when the sum of loop volume and lung volume remains constant.[ citation needed ]

Breathing gases for scuba

Until Nitrox, which contains more oxygen than air, was widely accepted in the late 1990s, [10] almost all recreational scuba used simple compressed and filtered air. Other gas mixtures, typically used for deeper dives by technical divers, may substitute helium for some or all of the nitrogen (called Trimix, or Heliox if there is no nitrogen), or use lower proportions of oxygen than air. In these situations divers often carry additional scuba sets, called stages, with gas mixtures with higher levels of oxygen that are primarily used to reduce decompression time in staged decompression diving. [11] These gas mixes allow longer dives, better management of the risks of decompression sickness, oxygen toxicity or lack of oxygen (hypoxia), and the severity of nitrogen narcosis. Closed circuit scuba sets (rebreathers) provide a gas mix that is controlled to optimise the mix for the actual depth at the time.

Types

Scuba sets are of two types:

Both types of scuba set include a means of supplying air or other breathing gas, nearly always from a high pressure diving cylinder, and a harness to attach it to the diver. Most open-circuit scuba sets have a demand regulator to control the supply of breathing gas, and most rebreathers have a constant-flow injector, or an electronically controlled injector to supply fresh gas, but also usually have an automatic diluent valve (ADV), which functions in the same way as a demand valve, to maintain the loop volume during descent. [12]

Open-circuit

Open-circuit-demand scuba exhausts exhaled air to the environment, and requires each breath to be delivered to the diver on demand by a diving regulator, which reduces the pressure from the storage cylinder and supplies it through the demand valve when the diver reduces the pressure in the demand valve slightly during inhalation. [7] [5]

The essential subsystems of an open-circuit scuba set are;[ citation needed ]

Additional components which when present are considered part of the scuba set are;

The buoyancy compensator is generally assembled as an integrated part of the set, but is not technically part of the breathing apparatus.

The cylinder is usually worn on the back. "Twin sets" with two low capacity back-mounted cylinders connected by a high pressure manifold were more common in the 1960s than now for recreational diving, although larger capacity twin cylinders ("doubles") are commonly used by technical divers for increased dive duration and redundancy. At one time a firm called Submarine Products sold a sport air scuba set with three manifolded back-mounted cylinders.[ citation needed ] Cave and wreck penetration divers sometimes carry cylinders attached at their sides instead, allowing them to swim through more confined spaces.

Constant flow scuba

Constant flow scuba sets do not have a demand regulator; the breathing gas flows at a constant rate, unless the diver switches it on and off by hand. They use more air than demand regulated scuba. There were attempts at designing and using these for diving and for industrial use before the Cousteau-type aqualung became commonly available circa 1950. Examples were Charles Condert's dress in the US (as of 1831), "Ohgushi's Peerless Respirator" in Japan (a bite-controlled regulator, as of 1918), and Yves le Prieur's hand-controlled regulator in France (as of 1926); see Timeline of diving technology. These systems are obsolete as they waste most of the gas or require manual control of each breath, and more efficient demand regulators are available.

Open circuit demand scuba

This system consists of one or more diving cylinders containing breathing gas at high pressure, typically 200–300 bars (2,900–4,400 psi), connected to a diving regulator. The demand regulator automatically supplies the diver with as much gas as is needed at the ambient pressure.

This type of breathing set is sometimes called an aqualung. The word Aqua-Lung , which first appeared in the Cousteau-Gagnan patent, is a trademark, currently owned by Aqua Lung/La Spirotechnique. [13]

Twin-hose demand regulator
Classic twin-hose Cousteau-type aqualung Aqualung old type.jpg
Classic twin-hose Cousteau-type aqualung

This is the first type of diving demand valve to come into general use, and the one that can be seen in classic 1960s television scuba adventures, such as Sea Hunt. They were often use with manifolded twin cylinders.

All the stages of this type of regulator are in a large valve assembly mounted directly to the cylinder valve or manifold, behind the diver's neck. Two large bore corrugated rubber breathing hoses connect the regulator with the mouthpiece, one for supply and one for exhaust. The exhaust hose is used to return the exhaled air to the regulator, to avoid pressure differences due to depth variation between the exhaust valve and final stage diaphragm, which would cause a free-flow of gas, or extra resistance to breathing, depending on the diver's orientation in the water. In modern single-hose sets this problem is avoided by moving the second-stage regulator to the diver's mouthpiece. The twin-hose regulators came with a mouthpiece as standard, but a full-face diving mask was an option.[ citation needed ]

Single-hose regulator
A single-hose regulator with 2nd stage, gauges, BC attachment, and dry suit hose mounted on a cylinder Aqua lung.jpg
A single-hose regulator with 2nd stage, gauges, BC attachment, and dry suit hose mounted on a cylinder

Most modern open-circuit scuba sets have a diving regulator consisting of a first-stage pressure-reducing valve connected to the diving cylinder's output valve or manifold. This regulator reduces the pressure from the cylinder, which may be up to 300 bars (4,400 psi), to a lower pressure, generally between about 9 and 11 bar above the ambient pressure. A low-pressure hose links this with the second-stage regulator, or "demand valve", which is mounted on the mouthpiece. Exhalation occurs through a rubber one-way mushroom valve in the chamber of the demand valve, directly into the water quite close to the diver's mouth. Some early single hose scuba sets used full-face masks instead of a mouthpiece, such as those made by Desco [14] and Scott Aviation [15] (who continue to make breathing units of this configuration for use by firefighters).

Modern regulators typically feature high-pressure ports for pressure sensors of dive-computers and submersible pressure gauges, and additional low-pressure ports for hoses for inflation of dry suits and BC devices. [16]

Secondary demand valve on a regulator
Scuba harness with backplate and back mounted "wing" buoyancy compensator
Regulator first stage
Cylinder valve
Shoulder straps
Buoyancy compensator bladder
Buoyancy compensator relief and lower manual dump valve
DV/Regulator second stages (primary and "octopus")
Console (submersible pressure gauge, depth gauge & compass)
Dry-suit inflator hose
Backplate
Buoyancy compensator inflator hose and inflation valve
Buoyancy compensator mouthpiece and manual dump valve
Crotch strap
Waist strap Plongee-StabilisateurDorsal 20090220 PlaqueLacasse.jpeg
Scuba harness with backplate and back mounted "wing" buoyancy compensator
  1. Regulator first stage
  2. Cylinder valve
  3. Shoulder straps
  4. Buoyancy compensator bladder
  5. Buoyancy compensator relief and lower manual dump valve
  6. DV/Regulator second stages (primary and “octopus”)
  7. Console (submersible pressure gauge, depth gauge & compass)
  8. Dry-suit inflator hose
  9. Backplate
  10. Buoyancy compensator inflator hose and inflation valve
  11. Buoyancy compensator mouthpiece and manual dump valve
  12. Crotch strap
  13. Waist strap

Most recreational scuba sets have a backup second-stage demand valve on a separate hose, a configuration called a "secondary", or "octopus" demand valve, "alternate air source", "safe secondary" or "safe-second". The idea was conceived by cave-diving pioneer Sheck Exley as a way for cave divers to share air while swimming single-file in a narrow tunnel,[ citation needed ] but has now become the standard in recreational diving. By providing a secondary demand valve the need to alternately breathe off the same mouthpiece when sharing air is eliminated. This reduces the stress on divers who are already in a stressful situation, and this in turn reduces air consumption during the rescue and frees the donor's hand.[ citation needed ]

Some diver training agencies recommend that a diver routinely offer their primary demand valve to a diver requesting to share air, and then switch to their own secondary demand valve. [11] The idea behind this technique is that the primary demand valve is known to be working, and the diver donating the gas is less likely to be stressed or have a high carbon dioxide level, so has more time to sort out their own equipment after temporarily suspending the ability to breathe. In many instances, panicked divers have grabbed the primary regulators out of the mouths of other divers,[ citation needed ] so changing to the backup as a routine reduces stress when it is necessary in an emergency.

In technical diving donation of the primary demand valve is commonly the standard procedure, and the primary is connected to the first stage by a long hose, typically around 2 m, to allow gas sharing while swimming in single file in a narrow space as might be required in a cave or wreck. In this configuration the secondary is generally held under the chin by a loose bungee loop around the neck, supplied by a shorter hose, and is intended for backup use by the diver donating gas. [11] The backup regulator is usually carried in the diver's chest area where it can be easily seen and accessed for emergency use. It may be worn secured by a breakaway clip on the buoyancy compensator, plugged into a soft friction socket attached to the harness, secured by sliding a loop of the hose into the shoulder strap cover of a jacket style BC, or suspended under the chin on a break-away bungee loop known as a necklace. These methods also keep the secondary from dangling below the diver and being contaminated by debris or snagging on the surroundings. Some divers store it in a BC pocket, but this reduces availability in an emergency.

Occasionally, the secondary second-stage is combined with the inflation and exhaust valve assembly of the buoyancy compensator device. This combination eliminates the need for a separate low pressure hose for the BC, though the low pressure hose connector for combined use must have a larger bore than for standard BC inflation hoses, because it will need to deliver a higher flow rate if it is used for breathing.[ citation needed ] This combination unit is carried in the position where the inflator unit would normally hang on the left side of the chest. With integrated DV/BC inflator designs, the secondary demand valve is at the end of the shorter BC inflation hose, and the donor must retain access to it for buoyancy control, so donation of the primary regulator to help another diver is essential with this configuration.[ citation needed ]

The secondary demand valve is often partially yellow in color, and may use a yellow hose, for high visibility, and as an indication that it is an emergency or backup device.

When a side-mount configuration is used, the usefulness of a secondary demand valve is greatly reduced, as each cylinder will have a regulator and the one not in use is available as a backup. This configuration also allows the entire cylinder to be handed off to the receiver, so a long hose is also less likely to be needed.

Some diving instructors continue to teach buddy-breathing from a single demand valve as an obsolescent but still occasionally useful technique, learned in addition to the use of the backup DV, since availability of two second stages per diver is now assumed as standard in recreational scuba.[ citation needed ]

Cryogenic

There have been designs for a cryogenic open-circuit scuba which has liquid-air tanks instead of cylinders. Underwater cinematographer Jordan Klein, Sr. of Florida co-designed such a scuba in 1967, [17] called "Mako", and made at least five prototypes. [18]

The Russian Kriolang (from Greek cryo- (= "frost" taken to mean "cold") + English "lung") was copied from Jordan Klein's "Mako" cryogenic open-circuit scuba. and were made until at least 1974. [19] It would have to be filled a short time before use.

Rebreathers

An Inspiration rebreather seen from the front Inspiration front.JPg
An Inspiration rebreather seen from the front

A rebreather recirculates the breathing gas already used by the diver after replacing oxygen used by the diver and removing the carbon dioxide metabolic product. Rebreather diving is used by recreational, military and scientific divers where it can have advantages over open-circuit scuba. Since 80% or more of the oxygen remains in normal exhaled gas, and is thus wasted, rebreathers use gas very economically, making longer dives possible and special mixes cheaper to use at the cost of more complicated technology and more possible failure points. More stringent and specific training and greater experience is required to compensate for the higher risk involved. The rebreather's economic use of gas, typically 1.6 litres (0.06 cu ft) of oxygen per minute, allows dives of much longer duration for an equivalent gas supply than is possible with open-circuit equipment where gas consumption may be ten times higher. [20]

There are two main variants of rebreather – semi-closed circuit rebreathers, and fully closed circuit rebreathers, which include the subvariant of oxygen rebreathers. Oxygen rebreathers have a maximum safe operating depth of around 6 metres (20 ft), but several types of fully closed circuit rebreathers, when using a helium-based diluent, can be used deeper than 100 metres (330 ft). The main limiting factors on rebreathers are the duration of the carbon dioxide scrubber, which is generally at least 3 hours, increased work of breathing at depth, reliability of gas mixture control, and the requirement to be able to safely bail out at any point of the dive. [21]

Rebreathers are generally used for scuba applications, but are also occasionally used for bailout systems for surface supplied diving.[ citation needed ]

The possible endurance of a rebreather dive is longer than an open-circuit dive, for similar weight and bulk of the set, if the set is bigger than the practical lower limit for rebreather size, [22] and a rebreather can be more economical when used with expensive gas mixes such as heliox and trimix, [22] but this may require a lot of diving before the break-even point is reached, due to the high initial and running costs of most rebreathers, and this point will be reached sooner for deep dives where the gas saving is more pronounced. [20]

Diving cylinders

Gas cylinders used for scuba diving come in various sizes and materials and are typically designated by material – usually aluminium or steel, and size. In the U.S. the size is designated by their nominal capacity, the volume of the gas they contain when expanded to normal atmospheric pressure. Common sizes include 80, 100, 120 cubic feet, etc., with the most common being the "Aluminum 80". In most of the rest of the world the size is given as the actual internal volume of the cylinder, sometimes referred to as water capacity, as that is how it is measured and marked (WC) on the cylinder (10 liter, 12 liter, etc.). [23]

Cylinder working pressure will vary according to the standard of manufacture, generally ranging from 200 bar (2,900 psi) up to 300 bar (4,400 psi).

An aluminium cylinder is thicker and bulkier than a steel cylinder of the same capacity and working pressure, as suitable aluminium alloys have lower tensile strength than steel, and is more buoyant although actually heavier out of the water, which means the diver would need to carry more ballast weight. Steel is also more often used for high pressure cylinders, which carry more air for the same internal volume. [24]

The common method of blending nitrox by partial pressure requires that the cylinder is in "oxygen service", which means that the cylinder and cylinder valve have had any non-oxygen-compatible components replaced and any contamination by combustible materials removed by cleaning. [25] Diving cylinders are sometimes colloquially called "tanks" "scuba tanks", "bottles" or "flasks", and some of these may be equivalent to the correct term in other languages although the proper technical term for them is "cylinder" or "scuba cylinder". [26]

Rebreather divers and some open-circuit scuba divers carry extra diving cylinders for bailout in case the main breathing gas supply is used up or malfunctions. If the bailout cylinder is small, they may be called "pony cylinders". They have their own demand regulators and mouthpieces, and are technically distinct extra scuba sets. In technical diving, the diver may carry different equipment for different phases of the dive. Some breathing gas mixes, such as trimix, may only be used at depth, and others, such as pure oxygen, may only be used during decompression stops in shallow water. The heaviest cylinders are generally carried on the back supported by a backplate while others are side slung from strong points on the harness.[ citation needed ]

Harness configuration

Stabilizer jacket harness Bcd - stab.JPG
Stabilizer jacket harness
Scuba set with integral storage and transport bag Scuba set with integral bag PA111713.JPG
Scuba set with integral storage and transport bag

The scuba set can be carried by the diver in several ways. The two most common basic mounting configurations are back-mount and side-mount, and back-mount may be expanded to include auxiliary side-mounting, including bungee-constrained low profile side-mount, and the less compact sling-mount or stage-mount arrangement.

Back mount

Back mounted scuba is straightforward, popular and for a single cylinder well balanced and easy to learn to use. There are several variations on the configuration which have been developed to improve convenience, safety, or suitability for use with multiple cylinders.

Stabilizer jacket

The most common configuration for recreational diving is the stabilizer jacket harness, in which a single cylinder, or occasionally twins, is strapped to the jacket style buoyancy compensator which is used as the harness. Some jacket style harnesses allow a bailout or decompression cylinder to be sling mounted from D-rings on the harness. A small bailout cylinder (pony cylinder) can also be strapped to the side of the main back-mounted cylinder. [27] [28]

Backplate and wing

Backplate and wing harness Diving - scubadiver.JPG
Backplate and wing harness

Another popular configuration is the backplate and wing arrangement, which uses a back inflation buoyancy compensator bladder sandwiched between a rigid backplate and the main gas cylinder or cylinders. This arrangement is particularly popular with twin or double cylinder sets, and can be used to carry larger sets of three or four cylinders and most rebreathers. Additional cylinders for decompression can be sling mounted at the diver's sides.[ citation needed ]

Plain backpack

It is also possible to use a plain backpack harness to support the set, either with a horse-collar buoyancy compensator, or without any buoyancy compensator. This was the standard arrangement before the introduction of the buoyancy compensator, and is still used by some recreational and professional divers when it suits the diving operation.[ citation needed ]

Bailout and safety harness

Surface-supplied divers are generally required to carry an emergency gas supply, also known as a bailout set, which is usually back-mounted open circuit scuba connected into the breathing gas supply system by connecting an interstage hose to the gas switching block, (or bailout block), mounted on the side of the helmet or full-face mask, or on the diver's harness where it can easily be reached, but is unlikely to be accidentally opened. Other mounting arrangements may be used for special circumstances.

Integrated harness and storage/transport container

Diving with a scuba set with integral storage and transport bag such as the Mini B scuba system Scuba set with integral bag PA111753.JPG
Diving with a scuba set with integral storage and transport bag such as the Mini B scuba system

In this recent format the scuba system takes the form of a rucksack inside which is a bouyancy air cell, integrated weight system and horizontally mounted tank. The regulator, alternate air source and power inflator exit the top of the rucksack and the air gauge from the side. Some military rebreathers such as the Interspiro DCSC also store the breathing hoses inside the housing when not in use. [29]

Stage mounting

Technical divers may need to carry several different gas mixtures. These are intended to be used for different stages of the planned dive profile, and for safety reasons it is necessary for the diver to be able to check which gas is in use at any given depth and time, and to open and close the supply valves when required, so the gases are generally carried in fully self-contained independent scuba sets, which are suspended from the harness at the diver's sides. This arrangement is known as stage mounting, the scuba sets known as stage sets or stage cylinders, and usually applies to cylinders additional to the main back mounted set or sets.

Drop tanks

Stage sets may be cached along a penetration guideline to be retrieved during exit for convenience. These are also called drop tanks. A drop tank is usually rigged to be carried in a sling mount, and has a regulator with a pressure gauge fitted and is deposited at a suitable place along the guideline, usually clipped to the line to ensure that it can be found again. The amount of gas in a drop tank can vary depending on how it is intended to be used. The gas mix must be suitable for the stage in which it will be used, and will be marked on a label, usually with the owner's name, to avoid confusion. The cylinder valve is closed until the time of use. [30]

Stage-only mounting

Similar in basic concept to side mount and may be confused with it, but does not use bungees to control the top of the cylinder. No back mounted cylinder is carried, and all cylinders are slung at the sides like regular stage cylinders, so they do not tuck in under the arms for streamlining and low profile. [30]

Sidemount

Top view of diver with sidemount harness Top view of sidemount diver DSC 0078 Photo by Pete Nawrocky.JPG
Top view of diver with sidemount harness

Side-mount harnesses support the cylinders by clipping them to D-rings or butt rails at the hip on either or both sides, and the cylinders hang roughly parallel to the diver's torso when underwater. The top of the cylinder is held under the diver's shoulder by a bungee, keeping it roughly parallel to the torso, and may also be clipped onto the harness in the shoulder area by a bolt snap for security. The harness usually includes a buoyancy compensator bladder. It is possible for a skilled diver to carry up to 3 cylinders on each side with this system. [30] [ citation needed ]

Monkey diving

Recreational diving configuration with only a single side-mounted cylinder. [30]

No-mount diving

For some cave diving applications where there is little or no swimming involved and tight restrictions, the diver may carry one or more cylinders simply clipped to the harness or weightbelt, which can be unclipped when necessary to pass through a restriction. This has been called no-mount diving. [30]

Harness construction

Every scuba harness requires a system for supporting the cylinders on the harness, and a system for attaching the harness to the diver.

Basic harness

The most basic arrangement for a back-mounted set consists of a metal or webbing strap around the cylinder just below the shoulder, and another lower down the cylinder, to which webbing shoulder and waist straps are attached. Shoulder straps can be of fixed length to suit a particular diver, but are more often adjustable. Sometimes a quick release buckle is added to one or both of the shoulder straps. The waist belt has a buckle for closing and release. and the waist belt is usually adjustable for security and comfort. Various attachments have been used to attach the harness straps to the cylinder bands. A crotch strap is optional, and usually runs from the lower cylinder band to the front of the waistband. This strap prevents the set from riding upwards on the diver when in use. This arrangement is still occasionally seen in use.

Backplate or backpack harness

The characteristic difference between this and the basic harness, is that a rigid or flexible backplate is added between the cylinder and the harness straps. The cylinder is attached to the backplate by metal or webbing straps, and the harness straps are attached to the backplate. In other respects the system is similar to the basic harness. Methods of fixing the cylinder include metal clamping bands, secured by bolts or lever operated clamps, or webbing straps, usually secured by cam buckles.

This style of harness was originally used in this simple form, but is currently more usually used with a back inflation wing type buoyancy compensator sandwiched between the cylinder and the backplate.

Cam bands

Two cam bands holding a cylinder to a backplate Stainless steel cam buckle PB070436.jpg
Two cam bands holding a cylinder to a backplate
Plastic cam buckle tensioned Plastic cam buckle PB070451.jpg
Plastic cam buckle tensioned

The combination of webbing strap and cam action buckle that is used to secure the cylinder to a buoyancy compensator or backplate is known as a cam band or cam strap. [31] They are a type of tank band, [32] which includes the stainless steel straps used to hold twin cylinder sets together. [33] They generally rely on an over-centre lever action to provide tensioning and locking, which may be modified by length adjustment slots and secondary security fastening such as velcro to hold the free end in place. Most cam buckles for scuba are injection moulded plastic, but some are stainless steel. [31] Many recreational scuba harnesses rely on a single cam band to hold the cylinder to the backplate. Other models provide two cam bands for security. A cam band can also be used on a sling or sidemount scuba set to attach the lower clip to the cylinder.

Tank bands

Manifolded twin 12 litre steel cylinder set assembled using two stainless steel tank bands. Manifolded twin 12l steel cylinder set PB128182.jpg
Manifolded twin 12 litre steel cylinder set assembled using two stainless steel tank bands.

Stainless steel tank bands are the standard method for supporting manifolded twin cylinders, as they provide good support for the cylinders, minimise loads on the manifolds and provide simple and reliable attachment points for connection to a backplate

Sidemount harness

The most basic sidemount harness is little more than cylinders fitted with belt loops and slid onto the standard caver's belay or battery belt along with any extra weights needed to achieve neutral buoyancy, and a caver's belt mounted battery pack. This simple configuration is particularly low profile and suited to small cylinders.

A more complex but still minimalist system is a webbing harness with shoulder straps, waist belt and crotch strap, supporting a variety of sliders and D-rings for attachment of cylinders and accessories, with or without integrated weighting or separate weight belts, and with or without a back mounted buoyancy compensator, which may be attached to the harness, or directly to the diver. Cylinders are usually attached to a shoulder or chest D-ring and waist belt D-ring on each side.

Integrated harness and storage bag

Scuba set in integral carry bag Scuba set in integral carry bag PA081710.JPG
Scuba set in integral carry bag

A few examples of integrating a storage and carrying bag into the harness have been made, without notable success for open circuit scube. The most successful examples have been for military rebreathers, where there has been space in a rigid housing to fit the breathing hoses, mask or DSV, and simple harness straps inside the casing when the counterlungs are empty.

Sling and sidemount rigging

The rigging of sling and sidemount cylinders is similar, but not identical.Sling rigging includes a bolt snap at the shoulder and one near the base of the cylinder, which are clipped to the main scuba harness, which may be either back or sidemount arrangement with D-rings or rails as attachment points. The sidemount cylinder rigging may omit the shoulder clip, and has a bungee loop on the harness to secure and confine the top end of the set. [30] [34]

Accessories

Buoyancy compensator

In most scuba sets, a buoyancy compensator (BC) or buoyancy control device (BCD), such as a back-mounted wing or stabilizer jacket (also known as a "stab jacket"), is built into the harness. Although strictly speaking this is not a part of the breathing apparatus, it is usually connected to the diver's air supply, to provide easy inflation of the device. This can usually also be done manually via a mouthpiece, in order to save air while on the surface, or in case of a malfunction of the pressurized inflation system. The BCD inflates with air from the low pressure inflator hose to increase the volume of the scuba equipment and cause the diver gain buoyancy. Another button opens a valve to deflate the BCD and decrease the volume of the equipment and causes the diver to lose buoyancy. Some BCDs allow for integrated weight, meaning that the BCD has special pockets for the weights that can be dumped easily in case of an emergency. The function of the BCD, while underwater, is to keep the diver neutrally buoyant, i.e., neither floating up or sinking. The BCD is used to compensate for the compression of a wet suit, and to compensate for the decrease of the diver's mass as the air from the cylinder is breathed away. [35]

Ballast

Ballast is used to increase the average density of the scuba diver and equipment to compensate for the buoyancy of diving equipment, particularly the diving suit, allowing the diver to fully submerge with ease by obtaining neutral or slightly negative buoyancy. Weighting systems originally consisted of solid lead blocks attached to a belt around the diver's waist, but some diving weighting systems are incorporated into the BCD or harness. These systems may use small nylon bags of lead shot or small weights which are distributed around the BCD, allowing a diver to gain a better overall weight distribution leading to a more horizontal trim in the water. Tank weights can be attached to the cylinder or threaded on the cambands holding the cylinder into the BCD. [36]

Monitoring instruments

The basic instrument for monitoring available gas is the submersible pressure gauge, which indicates the remaining pressure in a scuba cylinder, by directly measuring pressure at a high-pressure port of the regulator first stage.

Many closed circuit rebreathers use advanced electronics to monitor and regulate the composition of the breathing gas. [37] the composition of open circuit gas is analysed before use and recorded on a label on the cylinder. The default value is air, which does not require a specific label.

Other

A diffuser is a component fitted over the exhaust outlet to break up the exhaled gas into bubbles small enough not to be seen above the surface the water, and make less noise (see acoustic signature). They are used in combat diving, to avoid detection by surface observers or by underwater hydrophones, Underwater mine disposal operations conducted by clearance divers, to make less noise, [38] to reduce the risk of detonating acoustic mines, and in marine biology, to avoid disruption of fish behavior. [39]

Designing an adequate diffuser for a rebreather is much easier than for open-circuit scuba, as the gas flow rate is generally much lower.[ citation needed ] An open-circuit diffuser system called the "scuba muffler" was prototyped by Eddie Paul in the early 1990s for underwater photographers John McKenney and Marty Snyderman; the prototype had two large filter stones mounted on the back of the cylinder with a hose connected to the exhaust ports of the second-stage regulator. The filter stones were mounted on a hinged arm to float 1 to 2 feet (30 to 60 cm) above the diver, to set up a depth-pressure-differential suction effect to counteract the extra exhalation pressure needed to breathe out through the diffuser. The scuba muffler was claimed to cut the exhalation noise by 90%. [40] Closed circuit rebreathers proved more useful in letting divers get near sharks. [41]

Gas endurance of a scuba set

Gas endurance of a scuba set is the time that the gas supply will last during a dive. This is influenced by the type of scuba set and the circumstances in which it is used.

Open circuit

The gas endurance of open-circuit-demand scuba depends on factors such as the capacity (volume of gas) in the diving cylinder, the depth of the dive and the breathing rate of the diver, which is dependent on exertion, fitness, physical size of the diver, state of mind, and experience, among other factors. New divers frequently consume all the air in a standard "aluminum 80" cylinder in 30 minutes or less on a typical dive, while experienced divers frequently dive for 60 to 70 minutes at the same average depth, using the same capacity cylinder, as they have learned more efficient diving techniques.[ citation needed ]

An open-circuit diver whose breathing rate at the surface (atmospheric pressure) is 15 litres per minute will consume 3 x 15 = 45 litres of gas per minute at 20 metres. [(20 m/10 m per bar) + 1 bar atmospheric pressure] × 15 L/min = 45 L/min). If an 11-litre cylinder filled to 200 bar is to be used until there is a reserve of 17% there is (83% × 200 × 11) = 1826 litres available. At 45 L/min the dive at depth will be a maximum of 40.5 minutes (1826/45). These depths and times are typical of experienced recreational divers leisurely exploring a coral reef using standard 200 bar "aluminum 80" cylinders as may be rented from a commercial recreational diving operation in most tropical island or coastal resorts.[ citation needed ]

Semi-closed rebreather

A semi-closed circuit rebreather may have an endurance of about 3 to 10 times that of the equivalent open-circuit dive, and is less affected by depth; gas is recycled but fresh gas must be constantly injected to replace at least the oxygen used, and any excess gas from this must be vented. Although it uses gas more economically, the weight of the rebreather encourages the diver to carry smaller cylinders. Still, most semi-closed systems allow at least twice the duration of average sized open-circuit systems (around two hours) and are often limited by scrubber endurance.[ citation needed ]

Closed circuit rebreathers

An oxygen rebreather diver or a fully closed circuit rebreather diver consumes about 1 litre of oxygen corrected to atmospheric pressure per minute. Except during ascent or descent, the fully closed circuit rebreather that is operating correctly uses very little or no diluent. A diver with a 3-litre oxygen cylinder filled to 200 bar who leaves 25% in reserve will be able to do a 450-minute = 7.5 hour dive (3 litres × 200 bar × 0.75 litres per minute = 450 minutes). This endurance is independent of depth. The life of the soda lime scrubber is likely to be less than this and so will be the limiting factor of the dive.[ citation needed ]

In practice, dive times for rebreathers are more often influenced by other factors, such as water temperature and the need for safe ascent (see Decompression (diving)), and this is generally also true for large-capacity open-circuit sets.[ citation needed ]

Hazards and safety

Scuba sets contain breathing gas at high pressure. The stored energy of the gas can do considerable damage if released in an uncontrolled manner. The highest risk is during charging of cylinders, but injuries have also occurred when cylinders have been stored in excessively hot environment, which can increase the gas pressure and may occasionally result in explosive rupture of damaged cylinders, by the use of incompatible cylinder valves, which can blow out under load, or by rupture of regulator hoses in contact with the user, as a pressure of more than 100 pounds per square inch (6.9 bar) can rupture the skin, and inject gas into the tissues, along with possible contaminants. [42] [23] [43]

Scuba is safety-critical equipment, as some modes of failure can put the user at immediate risk of death by drowning, and a catastrophic failure of a scuba cylinder can instantly kill or severely injure persons in the vicinity. Open circuit scuba is considered highly reliable if correctly assembled, tested, filled, maintained and used, and the risk of failure is fairly low, but high enough that it should be considered in dive planning, and where appropriate, precautions should be taken to allow appropriate response in case of a failure. Mitigation options depend on the circumstances and mode of failure.

Ergonomics

When the diver carries several diving cylinders, especially those made of steel, lack of buoyancy can be a problem, particularly at the start of a dive when they are all full, and the variation of buoyancy during the dive as the gas is used can require high-capacity buoyancy compensators to allow the diver to effectively maintain neutral buoyancy throughout the dive.[ citation needed ]

A large number of cylinders, hoses and fittings passing through the water tends to increase hydrodynamic drag, reducing swimming efficiency.[ citation needed ]

History

The Rouquayrol-Denayrouze apparatus was the first regulator to be mass-produced (from 1865 to 1965). In this picture the air reservoir presents its surface-supplied configuration. Dykeri, fig 6, Nordisk familjebok.png
The Rouquayrol-Denayrouze apparatus was the first regulator to be mass-produced (from 1865 to 1965). In this picture the air reservoir presents its surface-supplied configuration.
Henry Fleuss (1851-1932) improved the rebreather technology. Henry Albert Fleuss.jpg
Henry Fleuss (1851–1932) improved the rebreather technology.
Aqualung scuba set.
1. Breathing hose
2. Mouthpiece
3. Cylinder valve and regulator
4. Harness
5. Backplate
6. Cylinder Aqualung (PSF).png
Aqualung scuba set.
  • 1. Breathing hose
  • 2. Mouthpiece
  • 3. Cylinder valve and regulator
  • 4. Harness
  • 5. Backplate
  • 6. Cylinder

By the turn of the twentieth century, two basic architectures for underwater breathing apparatus had been pioneered; open-circuit surface supplied equipment where the diver's exhaled gas is vented directly into the water, and closed-circuit breathing apparatus where the diver's carbon dioxide is filtered from unused oxygen, which is then recirculated. Closed circuit equipment was more easily adapted to scuba in the absence of reliable, portable, and economical high pressure gas storage vessels. By the mid twentieth century, high pressure cylinders were available and two systems for scuba had emerged: open-circuit scuba where the diver's exhaled breath is vented directly into the water, and closed-circuit scuba where the carbon dioxide is removed from the diver's exhaled breath which has oxygen added and is recirculated. Oxygen rebreathers are severely depth limited due to oxygen toxicity risk, which increases with depth, and the available systems for mixed gas rebreathers were fairly bulky and designed for use with diving helmets. [44] The first commercially practical scuba rebreather was designed and built by the diving engineer Henry Fleuss in 1878, while working for Siebe Gorman in London. [45] His self contained breathing apparatus consisted of a rubber mask connected to a breathing bag, with an estimated 50–60% oxygen supplied from a copper tank and carbon dioxide scrubbed by passing it through a bundle of rope yarn soaked in a solution of caustic potash, the system giving a dive duration of up to about three hours. This apparatus had no way of measuring the gas composition during use. [45] [46] During the 1930s and all through World War II, the British, Italians and Germans developed and extensively used oxygen rebreathers to equip the first frogmen. The British adapted the Davis Submerged Escape Apparatus and the Germans adapted the Dräger submarine escape rebreathers, for their frogmen during the war. [47] In the U.S. Major Christian J. Lambertsen invented an underwater free-swimming oxygen rebreather in 1939, which was accepted by the Office of Strategic Services. [48] In 1952 he patented a modification of his apparatus, this time named SCUBA,(an acronym for "self-contained underwater breathing apparatus"), [49] [6] [1] [50] which became the generic English word for autonomous breathing equipment for diving, and later for the activity using the equipment. [51] After World War II, military frogmen continued to use rebreathers since they do not make bubbles which would give away the presence of the divers. The high percentage of oxygen used by these early rebreather systems limited the depth at which they could be used due to the risk of convulsions caused by acute oxygen toxicity.

Although a working demand regulator system had been invented in 1864 by Auguste Denayrouze and Benoît Rouquayrol, [52] the first open-circuit scuba system developed in 1925 by Yves Le Prieur in France was a manually adjusted free-flow system with a low endurance, which limited the practical usefulness of the system. [53] In 1942, during the German occupation of France, Jacques-Yves Cousteau and Émile Gagnan designed the first successful and safe open-circuit scuba, known as the Aqua-Lung. Their system combined an improved demand regulator with high-pressure air tanks. [54] This was patented in 1945. To sell his regulator in English-speaking countries Cousteau registered the Aqua-Lung trademark, which was first licensed to the U.S. Divers company, [55] and in 1948 to Siebe Gorman of England, [56] Siebe Gorman was allowed to sell in Commonwealth countries, but had difficulty in meeting the demand and the U.S. patent prevented others from making the product. The patent was circumvented by Ted Eldred of Melbourne, Australia, who developed the single-hose open-circuit scuba system, which separates the first stage and demand valve of the pressure regulator by a low-pressure hose, puts the demand valve at the diver's mouth, and releases exhaled gas through the demand valve casing. Eldred sold the first Porpoise Model CA single hose scuba early in 1952. [57]

Early scuba sets were usually provided with a plain harness of shoulder straps and waist belt. The waist belt buckles were usually quick-release, and shoulder straps sometimes had adjustable or quick release buckles. Many harnesses did not have a backplate, and the cylinders rested directly against the diver's back. [58] Early scuba divers dived without a buoyancy aid. [59] In an emergency they had to jettison their weights. In the 1960s adjustable buoyancy life jackets (ABLJ) became available, which can be used to compensate for loss of buoyancy at depth due to compression of the neoprene wetsuit and as a lifejacket that will hold an unconscious diver face-upwards at the surface, and that can be quickly inflated. The first versions were inflated from a small disposable carbon dioxide cylinder, later with a small direct coupled air cylinder. A low-pressure feed from the regulator first-stage to an inflation/deflation valve unit an oral inflation valve and a dump valve lets the volume of the ABLJ be controlled as a buoyancy aid. In 1971 the stabilizer jacket was introduced by ScubaPro. This class of buoyancy aid is known as a buoyancy control device or buoyancy compensator. [60] [61]

Sidemount diver pushing a cylinder in front Sidemount 032 Photo by Pete Nawrocky.jpg
Sidemount diver pushing a cylinder in front

A backplate and wing is an alternative configuration of scuba harness with a buoyancy compensation bladder known as a "wing" mounted behind the diver, sandwiched between the backplate and the cylinder or cylinders. Unlike stabilizer jackets, the backplate and wing is a modular system, in that it consists of separable components. This arrangement became popular with cave divers making long or deep dives, who needed to carry several extra cylinders, as it clears the front and sides of the diver for other equipment to be attached in the region where it is easily accessible. This additional equipment is usually suspended from the harness or carried in pockets on the exposure suit. [11] [62] Sidemount is a scuba diving equipment configuration which has basic scuba sets, each comprising a single cylinder with a dedicated regulator and pressure gauge, mounted alongside the diver, clipped to the harness below the shoulders and along the hips, instead of on the back of the diver. It originated as a configuration for advanced cave diving, as it facilitates penetration of tight sections of cave as, sets can be easily removed and remounted when necessary. The configuration allows easy access to cylinder valves, and provides easy and reliable gas redundancy. These benefits for operating in confined spaces were also recognized by divers who made wreck diving penetrations. Sidemount diving has grown in popularity within the technical diving community for general decompression diving, [63] and has become a popular specialty for recreational diving. [64] [65] [66]

Technical diver during a decompression stop TechDiving NOAA.jpg
Technical diver during a decompression stop

Technical diving is recreational scuba diving that exceeds the generally accepted recreational limits, and may expose the diver to hazards beyond those normally associated with recreational diving, and to greater risks of serious injury or death. These risks may be reduced by appropriate skills, knowledge and experience, and by using suitable equipment and procedures. The concept and term are both relatively recent advents, although divers had already been engaging in what is now commonly referred to as technical diving for decades. One reasonably widely held definition is that any dive in which at some point of the planned profile it is not physically possible or physiologically acceptable to make a direct and uninterrupted vertical ascent to surface air is a technical dive. [67] The equipment often involves breathing gases other than air or standard nitrox mixtures, multiple gas sources, and different equipment configurations. [68] Over time, some equipment and techniques developed for technical diving have become more widely accepted for recreational diving. [67]

The challenges of deeper dives and longer penetrations and the large amounts of breathing gas necessary for these dive profiles and ready availability of oxygen sensing cells beginning in the late 1980s led to a resurgence of interest in rebreather diving. By accurately measuring the partial pressure of oxygen, it became possible to maintain and accurately monitor a breathable gas mixture in the loop at any depth. [67] In the mid 1990s semi-closed circuit rebreathers became available for the recreational scuba market, followed by closed circuit rebreathers around the turn of the millennium. [69] Rebreathers are currently (2018) manufactured for the military, technical and recreational scuba markets. [67]

See also

Related Research Articles

<span class="mw-page-title-main">Buoyancy compensator (diving)</span> Equipment for controlling the buoyancy of a diver

A buoyancy compensator (BC), also called a buoyancy control device (BCD), stabilizer, stabilisor, stab jacket, wing or adjustable buoyancy life jacket (ABLJ), depending on design, is a type of diving equipment which is worn by divers to establish neutral buoyancy underwater and positive buoyancy at the surface, when needed.

<span class="mw-page-title-main">Diving regulator</span> Mechanism that controls the pressure of a breathing gas supply for diving

A diving regulator or underwater diving regulator is a pressure regulator that controls the pressure of breathing gas for underwater diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.

<span class="mw-page-title-main">Full-face diving mask</span> Diving mask that covers the mouth as well as the eyes and nose

A full-face diving mask is a type of diving mask that seals the whole of the diver's face from the water and contains a mouthpiece, demand valve or constant flow gas supply that provides the diver with breathing gas. The full face mask has several functions: it lets the diver see clearly underwater, it provides the diver's face with some protection from cold and polluted water and from stings, such as from jellyfish or coral. It increases breathing security and provides a space for equipment that lets the diver communicate with the surface support team.

<span class="mw-page-title-main">Buddy check</span> Pre-dive safety checks carried out by two-diver dive teams

The buddy check is a procedure carried out by scuba divers using the buddy system where each diver checks that the other's diving equipment is configured and functioning correctly just before the start of the dive. A study of pre-dive equipment checks done by individual divers showed that divers often fail to recognize common equipment faults. By checking each other's equipment as well as their own, it is thought to be more likely that these faults will be identified prior to the start of the dive.

<span class="mw-page-title-main">IDA71</span> Russian military rebreather for underwater and high altitude use

The Soviet, later Russian IDA71 military and naval rebreather is an oxygen rebreather intended for use by naval and military divers including Russian commando frogmen. As supplied it is in a plain backpack harness with no buoyancy aid. The casing is pressed aluminium with a hinged cover. It has a small optional nitrox cylinder which can be clipped on its outside to convert it to nitrox mode. It contains one oxygen cylinder and two absorbent canisters. In the bottom of its casing is an empty space which is intended for an underwater communications set.

<span class="mw-page-title-main">Backplate and wing</span> Type of back-mount scuba harness

A backplate and wing is a type of scuba harness with an attached buoyancy compensation device (BCD) which establishes neutral buoyancy underwater and positive buoyancy on the surface. Unlike most other BCDs, the backplate and wing is a modular system, in that it consists of separable components. The core components of this system are:

<span class="mw-page-title-main">Scuba diving</span> Swimming underwater, breathing gas carried by the diver

Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The name scuba is an anacronym for "Self-Contained Underwater Breathing Apparatus" and was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, a gas blend with a higher oxygen content, known as enriched air or nitrox, has become popular due to the reduced nitrogen intake during long or repetitive dives. Also, breathing gas diluted with helium may be used to reduce the effects of nitrogen narcosis during deeper dives.

<span class="mw-page-title-main">Sidemount diving</span> Diving using equipment configuration where scuba sets are clipped to the divers sides

Sidemount is a scuba diving equipment configuration which has scuba sets mounted alongside the diver, below the shoulders and along the hips, instead of on the back of the diver. It originated as a configuration for advanced cave diving, as it facilitates penetration of tight sections of cave, allows easy access to cylinder valves, provides easy and reliable gas redundancy, and tanks can be easily removed when necessary. These benefits for operating in confined spaces were also recognized by divers who conducted technical wreck diving penetrations.

<span class="mw-page-title-main">Porpoise (scuba gear)</span> Australian scuba manufacturer

Porpoise is a tradename for scuba developed by Ted Eldred in Australia and made there from the late 1940s onwards. The first Porpoise was a closed circuit oxygen rebreather, and the following models were all single hose open circuit regulators.

<span class="mw-page-title-main">Vintage scuba</span> Early model scuba equipment and the ongoing activity of diving with it

Vintage scuba is scuba equipment dating from 1975 and earlier, and the practice of diving using such equipment.

<span class="mw-page-title-main">Diving equipment</span> Equipment used to facilitate underwater diving

Diving equipment, or underwater diving equipment, is equipment used by underwater divers to make diving activities possible, easier, safer and/or more comfortable. This may be equipment primarily intended for this purpose, or equipment intended for other purposes which is found to be suitable for diving use.

<span class="mw-page-title-main">Bailout bottle</span> Emergency gas supply cylinder carried by a diver

A bailout bottle (BoB) or, more formally, bailout cylinder is a scuba cylinder carried by an underwater diver for use as an emergency supply of breathing gas in the event of a primary gas supply failure. A bailout cylinder may be carried by a scuba diver in addition to the primary scuba set, or by a surface supplied diver using either free-flow or demand systems. The bailout gas is not intended for use during the dive except in an emergency, and would be considered a fully redundant breathing gas supply if used correctly. The term may refer to just the cylinder, or the bailout set or emergency gas supply (EGS), which is the cylinder with the gas delivery system attached. The bailout set or bailout system is the combination of the emergency gas cylinder with the gas delivery system to the diver, which includes a diving regulator with either a demand valve, a bailout block, or a bailout valve (BOV).

<span class="mw-page-title-main">Underwater breathing apparatus</span> Equipment which provides breathing gas to an underwater diver

Underwater breathing apparatus is equipment which allows the user to breathe underwater. The three major categories of ambient pressure underwater breathing apparatus are:

<span class="mw-page-title-main">Scuba gas management</span> Logistical aspects of scuba breathing gas

Scuba gas management is the aspect of scuba diving which includes the gas planning, blending, filling, analysing, marking, storage, and transportation of gas cylinders for a dive, the monitoring and switching of breathing gases during a dive, efficient and correct use of the gas, and the provision of emergency gas to another member of the dive team. The primary aim is to ensure that everyone has enough to breathe of a gas suitable for the current depth at all times, and is aware of the gas mixture in use and its effect on decompression obligations, nitrogen narcosis, and oxygen toxicity risk. Some of these functions may be delegated to others, such as the filling of cylinders, or transportation to the dive site, but others are the direct responsibility of the diver using the gas.

<span class="mw-page-title-main">Scuba skills</span> The skills required to dive safely using a self-contained underwater breathing apparatus.

Scuba skills are skills required to dive safely using self-contained underwater breathing apparatus, known as a scuba set. Most of these skills are relevant to both open-circuit scuba and rebreather scuba, and many also apply to surface-supplied diving. Some scuba skills, which are critical to divers' safety, may require more practice than standard recreational training provides to achieve reliable competence.

<span class="mw-page-title-main">History of scuba diving</span> History of diving using self-contained underwater breathing apparatus

The history of scuba diving is closely linked with the history of the equipment. By the turn of the twentieth century, two basic architectures for underwater breathing apparatus had been pioneered; open-circuit surface supplied equipment where the diver's exhaled gas is vented directly into the water, and closed-circuit breathing apparatus where the diver's carbon dioxide is filtered from the exhaled breathing gas, which is then recirculated, and more gas added to replenish the oxygen content. Closed circuit equipment was more easily adapted to scuba in the absence of reliable, portable, and economical high pressure gas storage vessels. By the mid-twentieth century, high pressure cylinders were available and two systems for scuba had emerged: open-circuit scuba where the diver's exhaled breath is vented directly into the water, and closed-circuit scuba where the carbon dioxide is removed from the diver's exhaled breath which has oxygen added and is recirculated. Oxygen rebreathers are severely depth limited due to oxygen toxicity risk, which increases with depth, and the available systems for mixed gas rebreathers were fairly bulky and designed for use with diving helmets. The first commercially practical scuba rebreather was designed and built by the diving engineer Henry Fleuss in 1878, while working for Siebe Gorman in London. His self contained breathing apparatus consisted of a rubber mask connected to a breathing bag, with an estimated 50–60% oxygen supplied from a copper tank and carbon dioxide scrubbed by passing it through a bundle of rope yarn soaked in a solution of caustic potash. During the 1930s and all through World War II, the British, Italians and Germans developed and extensively used oxygen rebreathers to equip the first frogmen. In the U.S. Major Christian J. Lambertsen invented a free-swimming oxygen rebreather. In 1952 he patented a modification of his apparatus, this time named SCUBA, an acronym for "self-contained underwater breathing apparatus," which became the generic English word for autonomous breathing equipment for diving, and later for the activity using the equipment. After World War II, military frogmen continued to use rebreathers since they do not make bubbles which would give away the presence of the divers. The high percentage of oxygen used by these early rebreather systems limited the depth at which they could be used due to the risk of convulsions caused by acute oxygen toxicity.

<span class="mw-page-title-main">Outline of underwater diving</span> Hierarchical outline list of articles related to underwater diving

The following outline is provided as an overview of and topical guide to underwater diving:

<span class="mw-page-title-main">Index of underwater diving</span> Alphabetical listing of underwater diving related topics

The following index is provided as an overview of and topical guide to underwater diving:

References

  1. 1 2 Vann, Richard D. (2004). "Lambertsen and O2: beginnings of operational physiology". Undersea Hyperb Med. 31 (1): 21–31. PMID   15233157.
  2. Staff. "Death notices - In the News". Passedaway.com. Passed Away. Retrieved 8 August 2016.
  3. Staff (2014). "OSS Maritime Unit Operational Swimmer Group Photos (The FROGMEN of the OSS)". Guardian Spies: The Secret Story of the U.S. Coast Guard Intelligence in World War II. New London, CT: MEB Inc. Retrieved 8 August 2016.
  4. "Aqua-lung". Massachusetts Institute of Technology. Archived from the original on 4 January 2006.
  5. 1 2 3 4 5 Navy, US (2006). US Navy Diving Manual, 6th revision. Washington, DC.: US Naval Sea Systems Command. Archived from the original on 2 May 2008. Retrieved 15 September 2016.
  6. 1 2 Brubakk, Alf O.; Neuman, Tom S. (2003). Bennett and Elliott's physiology and medicine of diving (5th Rev ed.). Philadelphia, Pennsylvania: Saunders Ltd. ISBN   978-0-7020-2571-6.
  7. 1 2 3 NOAA Diving Program (U.S.) (2001). Joiner, James T. (ed.). NOAA Diving Manual, Diving for Science and Technology (4th ed.). Silver Spring, Maryland: National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, National Undersea Research Program. ISBN   978-0-941332-70-5. CD-ROM prepared and distributed by the National Technical Information Service (NTIS)in partnership with NOAA and Best Publishing Company
  8. 1 2 3 4 5 Staff (1977). "The Diving at Work Regulations 1997". Statutory Instruments 1997 No. 2776 Health and Safety. Kew, Richmond, Surrey: Her Majesty's Stationery Office (HMSO). Retrieved 6 November 2016.
  9. "Diving Regulations 2009". Occupational Health and Safety Act 85 of 1993 – Regulations and Notices – Government Notice R41. Pretoria: Government Printer. Archived from the original on 4 November 2016. Retrieved 3 November 2016 via Southern African Legal Information Institute.
  10. Lang, Michael, ed. (3 November 2000). "Proceedings of the DAN Nitrox workshop" (PDF). p. 1. Retrieved 10 July 2017.
  11. 1 2 3 4 Jablonski, Jarrod (2006). Doing It Right: The Fundamentals of Better Diving. High Springs, Florida: Global Underwater Explorers. ISBN   978-0-9713267-0-5.
  12. Sieber, Arne; Pyle, Richard (2010). "A review of the use of closed-circuit rebreathers for scientific diving". Underwater Technology. 29 (2): 73–78. doi:10.3723/ut.29.073.
  13. "Aqua-Lung Trademark of Aqua Lung America, Inc. – Registration Number 2160570 – Serial Number 75294647 :: Justia Trademarks". Justia. 2013. Retrieved 30 July 2014.
  14. "www.divedesco.com". www.divedesco.com. Retrieved 14 October 2022.
  15. http://www.scotthealthsafety.com Scott Aviation
  16. Harlow, Vance (1999). Scuba regulator maintenance and repair. Warner, New Hampshire: Airspeed Press. ISBN   0-9678873-0-5.
  17. "The International Scuba Diving Hall of Fame in the Cayman Islands". Visit Cayman Islands.
  18. Tzimoulis, Paul (December 1967). Skin Diver Magazine. pp. 29–33.
  19. Bech, Janwillem. "Cryo Pjottr". The Rebreather Site. Retrieved 10 July 2017.
  20. 1 2 Parrish, F. A.; Pyle, R. L. (2001). "Surface logistics and consumables for open-circuit and closed-circuit deep mixed-gas diving operations". MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295). Vol. 3. pp. 1735–1737. doi:10.1109/OCEANS.2001.968095. ISBN   978-0-933957-28-2. S2CID   108678674.
  21. Heine, John (2017). NAUI Master Scuba Diver. Nation Association of Underwater Instructors (NAUI). pp. 255–256. ISBN   9781577430414.
  22. 1 2 Shreeves, K.; Richardson, D. (23–24 February 2006). Lang, M.A.; Smith, N.E. (eds.). Mixed-Gas Closed-Circuit Rebreathers: An Overview of Use in Sport Diving and Application to Deep Scientific Diving. Proceedings of Advanced Scientific Diving Workshop (Technical report). Washington, DC: Smithsonian Institution.
  23. 1 2 South African National Standard SANS 10019:2008 Transportable containers for compressed, dissolved and liquefied gases - Basic design,manufacture, use and maintenance (6th ed.). Pretoria, South Africa: Standards South Africa. 2008. ISBN   978-0-626-19228-0.
  24. "How to Select a SCUBA Tank: Dive Gear Express". www.divegearexpress.com. Retrieved 15 May 2021.
  25. Richardson, D.; Shreeves, K (1996). "The PADI Enriched Air Diver course and DSAT oxygen exposure limits". South Pacific Underwater Medicine Society Journal. 26 (3). ISSN   0813-1988. OCLC   16986801.
  26. Denny, Megan (13 April 2020). "Scuba Diving Terms – Do Say This, Don't Say That". Professional Association of Diving Instructors. Retrieved 29 June 2022.
  27. Staff. "Pony bottle band kit". www.zeagle.com. Retrieved 8 November 2017.
  28. Staff. "AP Pony Cylinder Cambands". www.apdiving.com. Retrieved 8 November 2017.
  29. Larsson, A. (2000). "The Interspiro DCSC" . Retrieved 30 April 2013.
  30. 1 2 3 4 5 6 Davis, Andy (31 March 2023). "Modern sidemount diving". scubatechphilippines.com. Retrieved 15 June 2023.
  31. 1 2 "Cam Straps". www.diverite.com. Retrieved 7 November 2017.
  32. "XS Scuba Tank Bands with Stainless Steel Cam Buckles". www.leisurepro.com. Retrieved 7 November 2017.
  33. "Doubles tank bands". www.diverite.com. Retrieved 7 November 2017.
  34. Davis, Andy (31 March 2023). "What are the two styles of sidemount BCD design?". scubatechphilippines.com. Retrieved 15 June 2023.
  35. "Buoyancy Control Device (BCD)". www.padi.com. PADI. Retrieved 2020-12-28.
  36. "How to Thread a Tank Cam Band Buckle". The Scuba Doctor. Retrieved 2021-06-23.
  37. "Rebreathers". www.padi.com. PADI. Retrieved 2020-12-28.
  38. Chapple, JCB; Eaton, David J. Development of the Canadian Underwater Mine Apparatus and the CUMA Mine Countermeasures dive system. Defence R&D Canada Technical Report (Report). Defence R&D Canada., section 1.2.a
  39. Luczkovich, J.J.; Sprague, M.W. (2003). "Noisy Fish and even Louder Divers: Recording Fish Sounds Underwater, with some Problems and Solutions using Hydrophones, Sonobuoys, Divers, Underwater Video and ROVs". In Norton, S.F. (ed.). Proceedings of the 22nd Annual Scientific Diving Symposium. American Academy of Underwater Sciences.
  40. "Customs By Eddie Paul". E.P. Industries. 23 May 2007. Archived from the original on 2 February 2009. Retrieved 23 September 2009. – Section "Documentaries".
  41. De Maddalena, Alessandro; Buttigieg, Alex (2006). "The Social Lives of Hammerheads". The World & I Online. Retrieved 2009-09-23.
  42. McCafferty, Marty (2013). "DAN Diving Incident Reports: Compressed Gas Tears Skin, Penetrates Body". Divers Alert Network. Retrieved 2 October 2018.
  43. Liebscher, Caren (29 December 2015). "How to Transport a Scuba Tank - Rules to Comply With". Divers Alert Network. Retrieved 2 October 2018.
  44. Dekker, David L. "1889. Draegerwerk Lübeck". Chronology of Diving in Holland. www.divinghelmet.nl. Retrieved 14 January 2017.
  45. 1 2 Davis, R.H. (1955). Deep Diving and Submarine Operations (6th ed.). Tolworth, Surbiton, Surrey: Siebe Gorman & Company Ltd. p. 693.
  46. Quick, D. (1970). A History Of Closed Circuit Oxygen Underwater Breathing Apparatus. RANSUM-1-70 (Report). Sydney, Australia: Royal Australian Navy, School of Underwater Medicine.
  47. "Draeger diving helmets (1)". Diving Heritage.
  48. Shapiro, T. Rees (2011-02-19). "Christian J. Lambertsen, OSS officer who created early scuba device, dies at 93". The Washington Post.
  49. "1944 Lambertsen's breathing apparatus patent in Google Patents".
  50. Butler, F. K. (2004). "Closed-circuit oxygen diving in the U.S. Navy". Journal of Undersea and Hyperbaric Medicine. Bethesda, Maryland: Undersea and Hyperbaric Medicine Society. 31 (1): 3–20. PMID   15233156. Archived from the original on 13 June 2008. Retrieved 25 April 2008.{{cite journal}}: CS1 maint: unfit URL (link)
  51. "Definition of scuba in English". Oxford University Press. Archived from the original on September 25, 2016.
  52. Dekker, David L. "1860. Benoit Rouquayrol – Auguste Denayrouze". Chronology of Diving in Holland. www.divinghelmet.nl. Retrieved 26 January 2018.
  53. Commandant Le Prieur. Premier Plongée (First Diver). Editions France-Empire 1956
  54. Jacques-Yves Cousteau with Frédéric Dumas, The Silent World (London: Hamish Hamilton, 1953).
  55. "Laurent-Xavier Grima, Aqua Lung 1947–2007, soixante ans au service de la plongée sous-marine ! (in French)".
  56. Campbell, Bob (Summer 2006). "Siebe-Gorman's 'Tadpole' set". Historical Diving Times (39). Retrieved 3 August 2017.
  57. Byron, Tom (8 April 2014). History of Spearfishing and Scuba Diving in Australia: The First 80 Years 1917 to 1997. Xlibris Corporation. pp. 14, 35, 305, 320. ISBN   9781493136704.[ self-published source ]
  58. Roberts, Fred M. (1963). Basic Scuba: Self contained underwater breathing apparatus: Its operation, maintenance and use (2nd ed.). New York: Van Nostrand Reinholdt.
  59. cf. The Silent World , a film shot in 1955, before the invention of buoyancy control devices: in the film, Cousteau and his divers are permanently using their fins.
  60. Hanauer, Eric (1994). Diving Pioneers: An Oral History of Diving in America. Aqua Quest Publications, Inc. ISBN   9780922769438.
  61. Krestovnikoff, Miranda; Halls, Monty (2008). Scuba Diving. Eyewitness Companions. Dorling Kindersley Ltd. ISBN   9781405334099.
  62. Mount, Tom (2008). "9: Equipment Configuration". In Mount, Tom; Dituri, Joseph (eds.). Exploration and Mixed Gas Diving Encyclopedia (1st ed.). Miami Shores, Florida: International Association of Nitrox Divers. pp. 91–106. ISBN   978-0915539109.
  63. "PADI launches new Tec Sidemount Diver course". Diverwire. 5 March 2012. Archived from the original on 6 June 2012. Retrieved 18 August 2012.
  64. Hires, Lamar (Summer 2010). "Sidemount – Not Just For Cave Divers Anymore". Alert Diver Magazine. Archived from the original on 17 February 2013. Retrieved 18 August 2012.
  65. "PADI puts full weight behind sidemount diving". Diver Magazine. 6 June 2010. Archived from the original on 6 October 2012. Retrieved 18 August 2012.
  66. "Holy Sidemount!". X-Ray Magazine. 25 April 2010. Archived from the original on 3 December 2020. Retrieved 18 August 2012.
  67. 1 2 3 4 Menduno, Michael (18–20 May 2012). Vann, Richard D.; Denoble, Petar J.; Pollock, Neal W. (eds.). Building a consumer rebreather market: Lessons from the technical diving revolution (PDF). Rebreather Forum 3 Proceedings. Durham, North Carolina: AAUS/DAN/PADI. pp. 2–23. ISBN   978-0-9800423-9-9. Archived from the original (PDF) on 2014-07-17. Retrieved 2018-02-03.
  68. Richardson, Drew (2003). "Taking 'tec' to 'rec': the future of technical diving". South Pacific Underwater Medicine Society Journal. 33 (4).
  69. Mitchell, Simon J; Doolette, David J (June 2013). "Recreational technical diving part 1: an introduction to technical diving methods and activities". Diving and Hyperbaric Medicine. 43 (2): 86–93. PMID   23813462.

Bibliography

External images