Diving equipment

Last updated
Diving equipment
Commercial diving equipment at Eudi Show 2006 adventurediving.it.jpg
Surface supplied commercial diving equipment on display at a trade show
Other namesDive gear
UsesFacilitate underwater diving operations

Diving equipment, or underwater diving equipment, is equipment used by underwater divers to make diving activities possible, easier, safer and/or more comfortable. This may be equipment primarily intended for this purpose, or equipment intended for other purposes which is found to be suitable for diving use.

Contents

The fundamental item of diving equipment used by divers other than freedivers, is underwater breathing apparatus, such as scuba equipment, and surface-supplied diving equipment, but there are other important items of equipment that make diving safer, more convenient or more efficient. Diving equipment used by recreational scuba divers, also known as scuba gear, is mostly personal equipment carried by the diver, but professional divers, particularly when operating in the surface supplied or saturation mode, use a large amount of support equipment not carried by the diver.

Equipment which is used for underwater work or other activities which is not directly related to the activity of diving, or which has not been designed or modified specifically for underwater use by divers is not considered to be diving equipment.

Classes of underwater breathing apparatus

The diving mode is largely defined by the type of breathing apparatus used.

Personal diving equipment

This is the diving equipment worn by or carried by the diver for personal protection or comfort, or to facilitate the diving aspect of the activity, and may include a selection from:

Underwater breathing apparatus

Environmental protection

The underwater environment usually requires a diver to wear thermal, sting and abrasion protection.

In-water stabilisation and mobility

This equipment includes buoyancy control equipment and mobility equipment: Buoyancy control is achieved by ballasting with diving weights and compensating for buoyancy changes during the dive using a buoyancy compensator:

Mobility equipment allows the diver to move through the water and maneuver on the spot:

Equipment for dive monitoring and navigation

These are the equipment used for monitoring the course of the dive and following the dive plan when undesirable events are avoided. They include planning and monitoring the dive profile, gas usage and decompression, navigation, and modifying the plan to suit actual circumstances.

Vision and communication

Underwater vision is significantly affected by several factors. Objects are less visible because of lower levels of natural illumination and are blurred by scattering of light between the object and the viewer, also resulting in lower contrast. These effects vary with wavelength of the light, and color and turbidity of the water. The human eye is unable to focus when in direct contact with water, and an air space must be provided. Voice communication requires special equipment, and much recreational diver communication is visual and based on hand signals.

Safety equipment

Diving safety equipment in the broader sense would include all equipment that could make a dive safer, by reducing a hazard, reducing the probability of an adverse event, or mitigating its effects. This would include basic equipment such as primary breathing apparatus, exposure protection, buoyancy management equipment and mobility equipment. The more specific meaning is equipment primarily and explicitly used to improve safety of a dive or diving operation. Equipment intended to improve safety in the second sense includes:

Surface detection aids

Personal locator beacon for divers - sealed for immersion Personal locator beacon for divers P9170105.jpg
Personal locator beacon for divers - sealed for immersion
Personal locator beacon for divers - open showing coiled antenna Personal locator beacon for divers P9170107.jpg
Personal locator beacon for divers - open showing coiled antenna

The purposes of this class of personal equipment are to: [15]

Surface detection aids include: [15]

Personal tools and accessories

Vinyl toolbag with bolt snaps for securing to harness Diver's tool bag P6190008.jpg
Vinyl toolbag with bolt snaps for securing to harness
Norwegian diving pioneer Odd Henrik Johnsen with underwater camera (1960's) Odd Henrik Johnsen Scuba Diving.jpg
Norwegian diving pioneer Odd Henrik Johnsen with underwater camera (1960's)
Surface supplied diver rescue tether with soft eye and bolt snap Rescue tether P6190002.jpg
Surface supplied diver rescue tether with soft eye and bolt snap

Diving team tools and equipment

Surface support equipment connected with diving and underwater work

International diving flag ICS Alfa.svg
International diving flag
Informal Recreational diving flag ICS Diver.svg
Informal Recreational diving flag

Special equipment for underwater work not carried by the diver

Maintenance and testing

Life support equipment must be maintained and tested before use to ensure that it remains in serviceable condition and is fit for use at the time. Pre-dive inspection and testing of equipment at some level is standard procedure for all modes and applications of diving. The use of checklists is known to improve reliability of inspection and testing, and may be required by the applicable code of practice or operations manual, or manufacturer's operating instructions. Inadequate pre-dive checks of breathing apparatus can have fatal consequences for some equipment, such as rebreathers, or may require the diving operation to be aborted without achieving its objective.

Maintenance can be categorised as:

Decontamination and disinfection

Diving equipment may be exposed to contamination in use and when this happens it must be decontaminated This is a particular issue for hazmat diving, but incidental contamination can occur in other environments. Personal diving equipment shared by more than one user requires disinfection before use. Shared use is common for expensive commercial diving equipment, and for rental recreational equipment, and some items such as demand valves, masks, helmets and snorkels which are worn over the face or held in the mouth are possible vectors for infection by a variety of pathogens. Diving suits are also likely to be contaminated, but less likely to transmit infection directly.

When disinfecting diving equipment it is necessary to consider the effectiveness of the disinfectant on the expected pathogens, and the possible adverse effects on the equipment. Some highly effective methods for disinfection can damage the equipment, or cause accelerated degradation of components due to incompatibility with materials.

Development, manufacture and marketing

The market sectors are commercial diving, military diving, recreational and technical scuba, freediving, and snorkelling. with scientific diving using a mix of recreational, technical, and commercial equipment.

The commercial diving market is relatively small, but occupational safety issues keep cost of operations high and there is work that must be done in support of various industries, particularly the oil and gas industry, that make money available for high reliability equipment in small quantities. The military market is similarly constrained by small quantities, and there is a lot of overlap with commercial equipment where the applications are similar, but the technical requirements for stealth operations drive development of different equipment.

Recreational scuba and snorkelling are the largest markets, in which there is the most competition between manufacturers for market share, and in which the buyers are least knowledgeable about the technology and most susceptible to persuasion by advertising.

Technical diving is a niche market, where the buyers are willing to take higher risks than commercial operators, and there is enough money available to support a small number of manufacturers developing new technology. Scientific diving is also a small market, and tends to overlap the other sectors, using what is available, and occasionally driving development of new technology for special applications.

History

With the partial exception of breath-hold diving, the development of underwater diving capacity, scope, and popularity, has been closely linked to available technology, and the physiological constraints of the underwater environment which the technology allows divers to partially overcome.

DEMA

Diving Equipment and Marketing Association
AbbreviationDEMA
Formation1987
Type Trade Association
Legal status Mutual-benefit nonprofit corporation
Incorporated in California,
PurposeAdvocacy for the recreational diving industry
Headquarters California, United States of America
Membership
1,300
Website www.dema.org
Formerly called
Diving Equipment Manufacturers Association [20]

The Diving Equipment and Marketing Association (DEMA, formerly the Diving Equipment Manufacturers Association), [20] [21] is an international organization for the promotion and growth of the recreational scuba diving and snorkeling industry. It is a non-profit, global organization with more than 1,300 members, which promotes scuba diving through consumer awareness programs and media campaigns such as the national Be a Diver campaign; diver retention initiatives such as DiveCaching; and an annual trade-only event for businesses in the scuba diving, action watersports and adventure/dive-travel industries, DEMA Show. [22] Board Members serve three-year terms. [23]

The purposes and objectives of the Association are published as: [24]

Standards

National and international standards have been published for the manufacture and testing of diving equipment.

Underwater breathing apparatus

Swim fins

DIN 7876 swim fin footspace length and width measurements. Full-foot fin and open-heel fin with indication of foot length and foot width.jpg
DIN 7876 swim fin footspace length and width measurements.

Diving masks

GOST 20568 compliant Russian and Ukrainian diving masks. GOST 20568 compliant Russian and Ukrainian diving masks.jpg
GOST 20568 compliant Russian and Ukrainian diving masks.
A range of 1970s snorkels made to British Standard BS 4532 Britmarine 1970s Catalogue Snorkel Page.jpg
A range of 1970s snorkels made to British Standard BS 4532

Snorkels

Buoyancy compensators

Wetsuits

Dry suits

Depth gauges

Related Research Articles

<span class="mw-page-title-main">Scuba set</span> Self-contained underwater breathing apparatus

A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness or rigging by which it is carried and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge. In the looser sense, scuba set has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface-supplied diving systems and is allowed by the relevant legislation and code of practice.

<span class="mw-page-title-main">Recreational diver training</span> Training process for people who do not dive at work

Recreational diver training is the process of developing knowledge and understanding of the basic principles, and the skills and procedures for the use of scuba equipment so that the diver is able to dive for recreational purposes with acceptable risk using the type of equipment and in similar conditions to those experienced during training.

<span class="mw-page-title-main">Buoyancy compensator (diving)</span> Equipment for controlling the buoyancy of a diver

A buoyancy compensator (BC), also called a buoyancy control device (BCD), stabilizer, stabilisor, stab jacket, wing or adjustable buoyancy life jacket (ABLJ), depending on design, is a type of diving equipment which is worn by divers to establish neutral buoyancy underwater and positive buoyancy at the surface, when needed.

<span class="mw-page-title-main">Surface-supplied diving</span> Underwater diving breathing gas supplied from the surface

Surface-supplied diving is a mode of underwater diving using equipment supplied with breathing gas through a diver's umbilical from the surface, either from the shore or from a diving support vessel, sometimes indirectly via a diving bell. This is different from scuba diving, where the diver's breathing equipment is completely self-contained and there is no essential link to the surface. The primary advantages of conventional surface supplied diving are lower risk of drowning and considerably larger breathing gas supply than scuba, allowing longer working periods and safer decompression. Disadvantages are the absolute limitation on diver mobility imposed by the length of the umbilical, encumbrance by the umbilical, and high logistical and equipment costs compared with scuba. The disadvantages restrict use of this mode of diving to applications where the diver operates within a small area, which is common in commercial diving work.

<span class="mw-page-title-main">Diving mask</span> Watertight air-filled face cover with view-ports for improving underwater vision

A diving mask is an item of diving equipment that allows underwater divers, including scuba divers, free-divers, and snorkelers, to see clearly underwater. Surface supplied divers usually use a full face mask or diving helmet, but in some systems the half mask may be used. When the human eye is in direct contact with water as opposed to air, its normal environment, light entering the eye is refracted by a different angle and the eye is unable to focus the light on the retina. By providing an air space in front of the eyes, the eye is able to focus nearly normally. The shape of the air space in the mask slightly affects the ability to focus. Corrective lenses can be fitted to the inside surface of the viewport or contact lenses may be worn inside the mask to allow normal vision for people with focusing defects.

<span class="mw-page-title-main">Recreational diving</span> Diving for the purpose of leisure and enjoyment, usually when using scuba equipment

Recreational diving or sport diving is diving for the purpose of leisure and enjoyment, usually when using scuba equipment. The term "recreational diving" may also be used in contradistinction to "technical diving", a more demanding aspect of recreational diving which requires more training and experience to develop the competence to reliably manage more complex equipment in the more hazardous conditions associated with the disciplines. Breath-hold diving for recreation also fits into the broader scope of the term, but this article covers the commonly used meaning of scuba diving for recreational purposes, where the diver is not constrained from making a direct near-vertical ascent to the surface at any point during the dive, and risk is considered low.

<span class="mw-page-title-main">Buddy check</span> Pre-dive safety checks carried out by two-diver dive teams

The buddy check is a procedure carried out by scuba divers using the buddy system where each diver checks that the other's diving equipment is configured and functioning correctly just before the start of the dive. A study of pre-dive equipment checks done by individual divers showed that divers often fail to recognize common equipment faults. By checking each other's equipment as well as their own, it is thought to be more likely that these faults will be identified prior to the start of the dive.

<span class="mw-page-title-main">Scuba diving</span> Swimming underwater, breathing gas carried by the diver

Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The name scuba is an anacronym for "Self-Contained Underwater Breathing Apparatus" and was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, a gas blend with a higher oxygen content, known as enriched air or nitrox, has become popular due to the reduced nitrogen intake during long or repetitive dives. Also, breathing gas diluted with helium may be used to reduce the effects of nitrogen narcosis during deeper dives.

<span class="mw-page-title-main">Diver rescue</span> Rescue of a distressed or incapacitated diver

Diver rescue, usually following an accident, is the process of avoiding or limiting further exposure to diving hazards and bringing a diver to a place of safety. A safe place generally means a place where the diver cannot drown, such as a boat or dry land, where first aid can be administered and from which professional medical treatment can be sought. In the context of surface supplied diving, the place of safety for a diver with a decompression obligation is often the diving bell.

<span class="mw-page-title-main">Pony bottle</span> Small independent scuba cylinder usually carried for emergency gas supply

A pony bottle or pony cylinder is a small diving cylinder which is fitted with an independent regulator, and is usually carried by a scuba diver as an auxiliary scuba set. In an emergency, such as depletion of the diver's main air supply, it can be used as an alternative air source or bailout bottle to allow a normal ascent in place of a controlled emergency swimming ascent. The key attribute of a pony bottle is that it is a totally independent source of breathing gas for the diver.

<span class="mw-page-title-main">Alternative air source</span> Emergency supply of breathing gas for an underwater diver

In underwater diving, an alternative air source, or more generally alternative breathing gas source, is a secondary supply of air or other breathing gas for use by the diver in an emergency. Examples include an auxiliary demand valve, a pony bottle and bailout bottle.

<span class="mw-page-title-main">Snorkel (swimming)</span> Tube for breathing face down at the surface of the water

A snorkel is a device used for breathing atmospheric air when the wearer's head is face downwards in the water with the mouth and the nose submerged. It may be either a separate unit, or integrated into a swimming or diving mask. The integrated version is only suitable for surface snorkeling, while the separate device may also be used for underwater activities such as spearfishing, freediving, finswimming, underwater hockey, underwater rugby and for surface breathing while wearing scuba equipment. A standard snorkel is a curved tube with a shape usually resembling the letter "L" or "J", fitted with a mouthpiece at the lower end and made from plastic, synthetic elastomers, rubber, or light metal. The snorkel may have a loop or a clip to attach it to the head strap of the diving mask or swimming goggles, or may be tucked between the mask-strap and the head. Some snorkels are fitted with a float valve at the top to prevent flooding if the top opening is immersed, and some are fitted with a water trap and purge valve, intended for draining water from the tube.

<span class="mw-page-title-main">Scuba gas planning</span> Estimation of breathing gas mixtures and quantities required for a planned dive profile

Scuba gas planning is the aspect of dive planning and of gas management which deals with the calculation or estimation of the amounts and mixtures of gases to be used for a planned dive. It may assume that the dive profile, including decompression, is known, but the process may be iterative, involving changes to the dive profile as a consequence of the gas requirement calculation, or changes to the gas mixtures chosen. Use of calculated reserves based on planned dive profile and estimated gas consumption rates rather than an arbitrary pressure is sometimes referred to as rock bottom gas management. The purpose of gas planning is to ensure that for all reasonably foreseeable contingencies, the divers of a team have sufficient breathing gas to safely return to a place where more breathing gas is available. In almost all cases this will be the surface.

<span class="mw-page-title-main">Scuba skills</span> The skills required to dive safely using a self-contained underwater breathing apparatus.

Scuba skills are skills required to dive safely using self-contained underwater breathing apparatus, known as a scuba set. Most of these skills are relevant to both open-circuit scuba and rebreather scuba, and many also apply to surface-supplied diving. Some scuba skills, which are critical to divers' safety, may require more practice than standard recreational training provides to achieve reliable competence.

Dive leader is the title of an internationally recognised recreational diving certification. The training standard describes the minimum requirements for dive leader training and certification for recreational scuba divers in international standard ISO 24801-3 and the equivalent European Standard EN 14153-3. Various organizations offer training that meets the requirements of the dive leader standard. Some agencies use the title "Dive Leader" for their equivalent certification, but several other titles are also used, "Divemaster" may be the most widespread, but "Dive Supervisor" is also used, and should not be confused with the very different status and responsibilities of a professional diving supervisor. CMAS affiliates certifications which meet the requirements of CMAS 3-star diver should meet the standard by default. The occupation of a dive leader is also known as "dive guide", and is a specialist application of a "tour guide".

<span class="mw-page-title-main">Outline of underwater diving</span> Hierarchical outline list of articles related to underwater diving

The following outline is provided as an overview of and topical guide to underwater diving:

<span class="mw-page-title-main">Index of underwater diving</span> Alphabetical listing of underwater diving related topics

The following index is provided as an overview of and topical guide to underwater diving:

Diving procedures are standardised methods of doing things that are commonly useful while diving that are known to work effectively and acceptably safely. Due to the inherent risks of the environment and the necessity to operate the equipment correctly, both under normal conditions and during incidents where failure to respond appropriately and quickly can have fatal consequences, a set of standard procedures are used in preparation of the equipment, preparation to dive, during the dive if all goes according to plan, after the dive, and in the event of a reasonably foreseeable contingency. Standard procedures are not necessarily the only courses of action that produce a satisfactory outcome, but they are generally those procedures that experiment and experience show to work well and reliably in response to given circumstances. All formal diver training is based on the learning of standard skills and procedures, and in many cases the over-learning of the skills until the procedures can be performed without hesitation even when distracting circumstances exist. Where reasonably practicable, checklists may be used to ensure that preparatory and maintenance procedures are carried out in the correct sequence and that no steps are inadvertently omitted.

<span class="mw-page-title-main">Human factors in diving equipment design</span> Influence of the interaction between the user and the equipment on design

Human factors in diving equipment design are the influences of the interactions between the user and equipment in the design of diving equipment and diving support equipment. The underwater diver relies on various items of diving and support equipment to stay alive, healthy and reasonably comfortable and to perform planned tasks during a dive.

References

  1. Beyerstein, G (2006). Commercial Diving: Surface-Mixed Gas, Sur-D-O2, Bell Bounce, Saturation. In: Lang, MA and Smith, NE (Eds). Proceedings of Advanced Scientific Diving Workshop (Report). Smithsonian Institution, Washington, DC.
  2. Barsky, Steven M.; Long, Dick; Stinton, Bob (2006). Dry Suit Diving: A Guide to Diving Dry. Ventura, CA.: Hammerhead Press. p. 152. ISBN   9780967430560 . Retrieved 8 March 2009.
  3. Williams, Guy; Acott, Chris J (2003). "Exposure suits: a review of thermal protection for the recreational diver". South Pacific Underwater Medicine Society Journal . 33 (1). ISSN   0813-1988. OCLC   16986801.
  4. Bevan, John, ed. (2005). "Section 5.4". The Professional Divers's Handbook (second ed.). Alverstoke, GOSPORT, Hampshire, UK: Submex Ltd. p. 242. ISBN   978-0950824260.
  5. Halls, Monty (2007). Go scuba dive. Dorling Kindersley. ISBN   978-1405318211.
  6. Barsky, Steven (2007). Diving in High-Risk Environments (4th ed.). Ventura, California: Hammerhead Press. ISBN   978-0-9674305-7-7.
  7. Thornton, Mike; Randall, Robert; Albaugh, Kurt (March–April 2001). "Then and Now: Atmospheric Diving Suits". UnderWater magazine. Archived from the original on December 9, 2008. Retrieved 18 March 2012.
  8. Gronfeldt, Thomas (11 November 2016). "Gear Review: The Buddy-Watcher". scubadiverlife.com. Retrieved 25 October 2017.
  9. 1 2 Barsky, Steven M.; Christensen, Robert W. (2004). The Simple Guide to Commercial Diving. Hammerhead Press. pp. 78, 92–93. ISBN   9780967430546.
  10. Department of Labour (11 January 2002). Diving regulations 2001 of the Occupational Health and Safety Act 85 of 1993. Government Gazette, Republic of South Africa. Vol. 438. Pretoria: Government Printer.
  11. "U.S. Navy Standard Deep Sea Diving Outfit training film 43424 NA" on YouTube
  12. Gurr, Kevin (August 2008). "13: Operational Safety". In Mount, Tom; Dituri, Joseph (eds.). Exploration and Mixed Gas Diving Encyclopedia (1st ed.). Miami Shores, Florida: International Association of Nitrox Divers. pp. 165–180. ISBN   978-0-915539-10-9.
  13. Gentile, Gary (1998). The Technical Diving Handbook. Gary Gentile Productions. ISBN   1-883056-05-5.
  14. 1 2 3 "Recommendations Concerning the Use of Surface Marker Buoys" (PDF). www.bdsg.org. British Diving Safety Group. Archived from the original (PDF) on 29 December 2016. Retrieved 7 March 2016.
  15. 1 2 Guimbellot, Barry; Guimbellot, Ruth. "How to Be an Attention-Getter: Signaling Devices for Divers". dtmag.com. Retrieved 20 September 2023.
  16. "Tool bag" . Retrieved 28 March 2024.
  17. Bevan, John, ed. (2005). "3:Applied techniques". The Professional Divers's Handbook (second ed.). Alverstoke, Gosport, Hampshire: Submex Ltd. pp. 174–177. ISBN   978-0950824260.
  18. "15: Mixed gas and oxygen diving". The NOAA Diving Manual: Diving for Science and Technology (illustrated ed.). DIANE Publishing. 1992. p. 15.1. ISBN   9781568062310 . Retrieved 8 March 2016.
  19. "Maritime flags and their meaning". eoceanic.com. Retrieved 11 July 2022.
  20. 1 2 Brylske, Alex. "Training Standards: Understanding the "Why" Behind What Divers are Taught". Dive Training magazine. Archived from the original on 27 December 2013. Retrieved 26 January 2016.
  21. "Meet the Association - the Diving Equipment & Marketing Association".
  22. "Home". demashow.com.
  23. "Board, Committees & Staff Members - the Diving Equipment & Marketing Association".
  24. "Diving Equipment and Marketing Association Inc. Bylaws" (PDF). Archived from the original (PDF) on 2016-03-04. Retrieved 2015-10-08.
  25. US military standard MIL-S-82258 (1965) Swim Fins, Rubber. Document found online at https://assist.dla.mil. Retrieved 9 December 2014.
  26. "GOST 22469-77. Ласты резиновые для плавания. Общие технические условия. Swimming rubber flippers. General specifications, ИПК Издательство стандартов, Moscow. Document found online at standartgost.ru Retrieved 16 March 2019" (PDF). Archived from the original (PDF) on 17 April 2021. Retrieved 22 July 2019.
  27. Deutsches Institut für Normung (1980). DIN 7876 Tauchzubehör – Schwimmflossen – Maße, Anforderungen und Prüfung. [Diving accessories for skin divers; Flippers, dimensions, requirements and testing]. Berlin: Beutz Verlag GmbH.
  28. Wasielewski, Ireneusz. Gumowy sprzęt pływacki - Płetwy pływackie BN-82/8444-17.02 - Our Digital Library.
  29. Malaysian standard MS 974 (1985) Specification for rubber swimming fins, SIRIM Standards & Industrial Research Institute of Malaysia.
  30. Austrian Standards International: ÖNORM S 4224: Tauch-Zubehör; Schwimmflossen; Abmessungen, sicherheitstechnische Anforderungen, Prüfung, Normkennzeichnung. Diving accessories; fins; dimensions, safety requirements, testing, marking of conformity.
  31. Specification for rubber swimming fins. Malaysian standard MS 974 (Report) (First revision ed.). Department of Standards Malaysia. 2002.
  32. Diving equipment. Diving open heel fins. Requirements and test methods. European standard EN 16804 (Report). London: British Standards Institution. 2015.
  33. 1 2 British Standards Institution: BS 4532: Specification for snorkels and face masks. London: British Standards Institution. 1969. Amendment Slip No. 1 to BS 4532:1969 Snorkels and face masks, 30 December 1977.
  34. GOST 20568-75. Маски резиновые для плавания под водой. Общие технические условие. Rubber masks for submarine swimming. General specifications. Retrieved on 8 March 2019 at standartgost.ru
  35. Deutsches Institut für Normung: DIN 7878: Tauch-Zubehör. Tauchbrillen. Sicherheitstechnische Anforderungen und Prüfung. Diving accessories for skin divers. Diver’s masks. Requirements and testing, Berlin/Cologne: Beuth Verlag, 1980.
  36. Wasielewski, Ireneusz (July 9, 2013). "Gumowy sprzęt pływacki - Maski pływackie BN-82/8444-17.01 - Our Digital Library" via bc.pollub.pl.
  37. American National Standards Institute: ANSI Z87.11:1985: Underwater Safety. Recreational Skin and Scuba Diving. Lenses for Masks (Technical report). New York: American National Standards Institute. 1985.
  38. Austrian Standards International: ÖNORM S 4225: Tauchmasken (Tauchbrillen); Sicherheitstechnische Anforderungen, Prüfung, Normkennzeichnung. (Diving accessories; divers' masks; safety requirements, testing, marking of conformity). Vienna: Austrian Standards International. 1988.
  39. Bureau of Standards, Metrology and Inspection: CNS 12497: 潛水鏡. Diving mask. Bureau of Standards, Metrology and Inspection, Republic of China. Preview available at cnsonline.com.tw
  40. Bureau of Standards, Metrology and Inspection: CNS 12498: 潛水鏡檢驗法. Method of test for diving mask, Bureau of Standards, Metrology and Inspection, Republic of China. Preview available at cnsonline.com.tw
  41. Diving equipment. Diving mask. Requirements and test methods. European standard EN 16805 (Report). London: British Standards Institution. 2015.
  42. Deutsches Institut für Normung: DIN 7878: Tauch-Zubehör: Schnorchel. Maße. Anforderungen. Prüfung (Diving accessories for skin divers; snorkel; technical requirements of safety, testing), Berlin/Cologne: Beuth Verlag, 1980.
  43. Austrian Standards International: ÖNORM S 4223: Tauch-Zubehör; Schnorchel; Abmessungen, sicherheitstechnische Anforderungen, Prüfung, Normkennzeichnung (Diving accessories; snorkel; dimensions, safety requirements, testing, marking of conformity). Vienna: Austrian Standards International. 1988.
  44. Deutsches Institut für Normung (1991). DIN 7878: Tauch-Zubehör: Schnorchel. Sicherheitstechnische Anforderungen und Prüfung [Diving accessories for skin divers; snorkel; safety requirements and testing]. Berlin/Cologne: Beuth Verlag.
  45. British Standards Institution: BS EN 1972: Diving accessories - Snorkels - Safety requirements and test methods. London: British Standards Institution. 1997.
  46. British Standards Institution: BS EN 1972: Diving equipment - Snorkels - Requirements and test methods. London: British Standards Institution. 2015.
  47. BN-82/8444-17.05. Gumowy sprzęt pływacki - Kamizelki pływackie. Warsaw: Instytut Przemysłu Gumowego STOMIL (Łódź). 1982. Retrieved 26 November 2020 via bc.pollub.pl.

Commons-logo.svg Media related to Underwater diving equipment at Wikimedia Commons