Transportable pressure vessels for high-pressure gases are routinely inspected and tested as part of the manufacturing process. They are generally marked as evidence of passing the tests, either individually or as part of a batch (some tests are destructive), and certified as meeting the standard of manufacture by the authorised testing agency, making them legal for import and sale.[ citation needed ] When a cylinder is manufactured, its specification, including manufacturer, working pressure, test pressure, date of manufacture, capacity and weight are stamped on the cylinder. [1]
Most countries require diving cylinders to be checked on a regular basis. This usually consists of an internal visual inspection and a hydrostatic test. The inspection and testing requirements for scuba cylinders may be very different from the requirements for other compressed gas containers due to the more corrosive environment in which they are used. [2] After a cylinder passes the test, the test date, (or the test expiry date in some countries such as Germany), is punched into the shoulder of the cylinder for easy verification at fill time. [note 1] The international standard for the stamp format is ISO 13769, Gas cylinders - Stamp marking. [1]
A hydrostatic test involves pressurising the cylinder to its test pressure (usually 5/3 or 3/2 of the working pressure) and measuring its volume before and after the test. A permanent increase in volume above the tolerated level means the cylinder fails the test and must be permanently removed from service. [3] : sect. 5.7.3
An inspection may include external and internal inspection for damage, corrosion, and correct colour and markings. The failure criteria vary according to the published standards of the relevant authority, but may include inspection for bulges, overheating, dents, gouges, electrical arc scars, pitting, line corrosion, general corrosion, cracks, thread damage, defacing of permanent markings, and colour coding. [3] : sect. 5.7.3 [2]
Gas filling operators may be required to check the cylinder markings and perform an external visual inspection before filling the cylinder and may refuse to fill non-standard or out-of-test cylinders. [note 2]
Standard seamless high pressure aluminium cylinders do not have a limited life. They may be used until they fail test or inspection. Three cylinders from each batch are pulsation hydrostatically tested for 10,000 cycles from 0 to test pressure at 12 cycles per minute. An alternative test approved by the US Department of Transportation is 100,000 cycles from 0 to working pressure. For the batch to pass, there must be no leaks or failures. Bursting pressure when new is about 2.5 times working pressure. [4]
A cylinder is due to be inspected and tested at the first time it is to be filled after the expiry of the interval as specified by the United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations, or as specified by national or international standards applicable in the region of use. [5] [6] An external visual pre-fill inspection should be done before filling a cylinder.
If a cylinder passes the listed procedures, but the condition remains doubtful, further tests can be applied to ensure that the cylinder is fit for use. Cylinders that fail the tests or inspection and cannot be fixed should be rendered unserviceable after notifying the owner of the reason for failure. [11] [12]
Before starting work the cylinder must be identified from the labelling and permanent stamp markings, and the ownership and contents verified. [13] [14]
Before internal inspection the valve must be removed after depressurising and verifying that the valve is open. Cylinders containing breathing gases do not need special precautions for discharge except that high oxygen fraction gases should not be released in an enclosed space because of the fire hazard. If the valve is blocked or stuck closed it may be necessary to release the pressure by removing the burst disc or drilling into the valve body below the valve seat. These operations require care to avoid injury. [15] [16]
Before inspection the cylinder must be clean and free of loose coatings, corrosion products and other materials which may obscure the surface. Foreign materials may be removed by brushing, controlled shot-blasting, water-jet cleaning chemical cleaning or other non-destructive methods. The method used must not remove a significant amount of cylinder material, [17] and steel cylinders may not be heated above 300 °C. [18] Aluminium cylinders are even more restricted in the temperatures permitted, which are specified by the manufacturer. [19]
The cylinder is inspected for dents, cracks, gouges, cuts, bulges, laminations and excessive wear, heat damage, torch or electric arc burns, and corrosion damage. The cylinder is also checked for illegible, incorrect or unauthorised permanent stamp markings, and unauthorised additions or modifications. If the cylinder exceeds the rejection criteria for these items it is unsuitable for further service and will be made permanently unserviceable. [20] [21]
Typical rejection criteria include: [2]
(details to be added)
Unless the cylinder walls are examined by ultrasonic methods, the interior must be visually inspected using sufficient illumination to identify any damage and defects, particularly corrosion. If the inner surface is not clearly visible it should be cleaned by approved method which does not remove a significant amount of wall material. Methods allowed include shot-blasting, water jet cleaning, flailing, steam or hot water jet, rumbling and chemical cleaning . The cylinder must be internally inspected after cleaning. [22] [23]
Typical rejection criteria include: [2]
(details to be added)
When there is uncertainty whether a defect found during visual inspection meets the rejection criteria, additional tests may be applied, such as ultrasonic measurement of pitting wall thickness, or weight checks to establish total weight lost to corrosion. [24] Hardness tests on aluminium cylinders are done on the cylindrical body and must avoid making deep impressions. [25]
While the valve is off, the threads of cylinder and valve must be checked to identify the thread type and condition. The threads of cylinder and valve must be of matching thread specification, clean and full form, undamaged and free of cracks, burrs and other imperfections. Tap marks [note 3] are acceptable and should not be confused with cracks. Other neck surfaces will also be examined to be sure they are free from cracks. In some cases threads may be re-tapped, but if the threads are altered they must be checked with the appropriate thread gauges. [26] [27]
The aluminium alloys used for diving cylinders are 6061 and 6351. 6351 alloy is subject to sustained load cracking and cylinders manufactured of this alloy should be periodically eddy current tested according to national legislation and manufacturer's recommendations. [28] [29] 6351 alloy has been superseded for new manufacture, but many old cylinders are still in service, and are still legal and considered safe if they pass the periodic hydrostatic, visual and eddy current tests required by regulation and as specified by the manufacturer. The number of cylinders that have failed catastrophically is in the order of 50 out of some 50 million manufactured. A larger number have failed the eddy current test and visual inspection of neck threads, or have leaked and been removed from service without harm to anyone. [30]
Ultrasonic inspection may be substituted for the pressure test, which is usually a hydrostatic test and may be either a proof test or a volumetric expansion test, depending on the cylinder design specification. Test pressure is specified in the stamp markings of the cylinder. The results of a correctly performed pressure test are final. [31] [32]
Valves that are to be reused must be inspected and maintained to ensure they remain fit for service. [33] [34]
The recommended practice for valve inspection and maintenance includes inspection, and where applicable correction of threads, cleaning of components, replacement of excessively worn and damaged parts, packing and safety devices, lubrication as applicable with approved lubricants for the gas service, checks for correct operation and sealing at intended operating pressure. Checks may be done with the valve fitted to the cylinder after inspection and testing, or before the valve is fitted. [35] [36]
Gauging of threads may be mandatory to ensure the integrity of parallel threads. If the gauge exceeds the maximum gauge limit for taper threads, re-tapping may be considered at the discretion of the competent person. [37]
The interior of the cylinder must be thoroughly dried immediately after cleaning or hydrostatic testing, and the interior inspected to ensure that there is no trace of free water or other contaminants. [38] [39]
If the cylinder is repainted or plastic coated, the temperature must not exceed 300 °C for steel cylinders, [40] or the temperature specified by the manufacturer for aluminium cylinders. [19]
Before fitting the valve the thread type must be checked to ensure that a valve with matching thread specification is fitted. [41] Fitting of valves should follow the procedures specified in ISO 13341 Transportable gas cylinders - Fitting of valves to gas cylinders. [42]
After the tests have been satisfactorily completed, a cylinder passing the test will be marked accordingly. Stamp marking will include the registered mark of the inspection facility and the date of testing (month and year). [43] [44]
Records of a periodic inspection and test are made by the test station and kept available for inspection. These include: [45] [46]
Identification of the cylinder:
Records of the tests and inspections:
If a cylinder fails inspection or testing and cannot be recovered, the owner must be notified before making the empty cylinder unserviceable by crushing, burning a hole in the shoulder, irregular cutting of the neck or cylinder or bursting using a safe method. If the owner does not give permission they become legally responsible for any consequences. [47]
Before filling a cylinder the filling operator may be required by regulations, code of practice, or operations manual, to inspect the cylinder and valve for any obvious external defects or damage, and to reject for filling any cylinder that does not comply with the standards. They may also be required to record cylinder details in the filling log. [2]
This section needs expansion. You can help by adding to it. (June 2023) |
In South Africa test stations are accredited by the South African National Accreditation System (SANAS) under the approval of the Department of Employment and Labour. [48]
A valve is a device or natural object that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure. The word is derived from the Latin valva, the moving part of a door, in turn from volvere, to turn, roll.
Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology. Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical engineering, civil engineering, systems engineering, aeronautical engineering, medicine, and art. Innovations in the field of nondestructive testing have had a profound impact on medical imaging, including on echocardiography, medical ultrasonography, and digital radiography.
A hydrostatic test is a way in which pressure vessels such as pipelines, plumbing, gas cylinders, boilers and fuel tanks can be tested for strength and leaks. The test involves filling the vessel or pipe system with a liquid, usually water, which may be dyed to aid in visual leak detection, and pressurization of the vessel to the specified test pressure. Pressure tightness can be tested by shutting off the supply valve and observing whether there is a pressure loss. The location of a leak can be visually identified more easily if the water contains a colorant. Strength is usually tested by measuring permanent deformation of the container.
A diving cylinder or diving gas cylinder is a gas cylinder used to store and transport high pressure gas used in diving operations. This may be breathing gas used with a scuba set, in which case the cylinder may also be referred to as a scuba cylinder, scuba tank or diving tank. When used for an emergency gas supply for surface supplied diving or scuba, it may be referred to as a bailout cylinder or bailout bottle. It may also be used for surface-supplied diving or as decompression gas. A diving cylinder may also be used to supply inflation gas for a dry suit or buoyancy compensator. Cylinders provide gas to the diver through the demand valve of a diving regulator or the breathing loop of a diving rebreather.
A diving regulator is a pressure regulator that controls the pressure of breathing gas for diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.
An inspection is, most generally, an organized examination or formal evaluation exercise. In engineering activities inspection involves the measurements, tests, and gauges applied to certain characteristics in regard to an object or activity. The results are usually compared to specified requirements and standards for determining whether the item or activity is in line with these targets, often with a Standard Inspection Procedure in place to ensure consistent checking. Inspections are usually non-destructive.
A diving air compressor is a gas compressor that can provide breathing air directly to a surface-supplied diver, or fill diving cylinders with high-pressure air pure enough to be used as a breathing gas. A low pressure diving air compressor usually has a delivery pressure of up to 30 bar, which is regulated to suit the depth of the dive. A high pressure diving compressor has a delivery pressure which is usually over 150 bar, and is commonly between 200 and 300 bar. The pressure is limited by an overpressure valve which may be adjustable.
A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.
A gas cylinder is a pressure vessel for storage and containment of gases at above atmospheric pressure. High-pressure gas cylinders are also called bottles. Inside the cylinder the stored contents may be in a state of compressed gas, vapor over liquid, supercritical fluid, or dissolved in a substrate material, depending on the physical characteristics of the contents. A typical gas cylinder design is elongated, standing upright on a flattened bottom end, with the valve and fitting at the top for connecting to the receiving apparatus.
Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, or pipes.
In pipeline transportation, pigging is the practice of using pipeline inspection gauges or gadgets, devices generally referred to as pigs or scrapers, to perform various maintenance operations. This is done without stopping the flow of the product in the pipeline.
A leak is a way for fluid to escape a container or fluid-containing system, such as a tank or a ship's hull, through which the contents of the container can escape or outside matter can enter the container. Leaks are usually unintended and therefore undesired. The word leak usually refers to a gradual loss; a sudden loss is usually called a spill.
A surface condenser is a water-cooled shell and tube heat exchanger installed to condense exhaust steam from a steam turbine in thermal power stations. These condensers are heat exchangers which convert steam from its gaseous to its liquid state at a pressure below atmospheric pressure. Where cooling water is in short supply, an air-cooled condenser is often used. An air-cooled condenser is however, significantly more expensive and cannot achieve as low a steam turbine exhaust pressure as a water-cooled surface condenser.
A pipe is a tubular section or hollow cylinder, usually but not necessarily of circular cross-section, used mainly to convey substances which can flow — liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipe is far stiffer per unit weight than solid members.
A scuba manifold is a device incorporating one or more valves and one or more gas outlets with scuba regulator connections, used to connect two or more diving cylinders containing breathing gas, providing a greater amount of gas for longer dive times or deeper dives. An isolation manifold allows the connection between the cylinders to be closed in the case of a leak from one of the cylinders or its valve or regulator, conserving the gas in the other cylinder. Diving with two or more cylinders is often associated with technical diving. Almost all manifold assemblies include one cylinder valve for each cylinder, and the overwhelming majority are for two cylinders.
The ASME Boiler & Pressure Vessel Code (BPVC) is an American Society of Mechanical Engineers (ASME) standard that regulates the design and construction of boilers and pressure vessels. The document is written and maintained by volunteers chosen for their technical expertise. The ASME works as an accreditation body and entitles independent third parties to inspect and ensure compliance to the BPVC.
Sustained load cracking, or SLC, is a metallurgical phenomenon that occasionally develops in pressure vessels and structural components under stress for sustained periods of time.
Scuba gas management is the aspect of scuba diving which includes the gas planning, blending, filling, analysing, marking, storage, and transportation of gas cylinders for a dive, the monitoring and switching of breathing gases during a dive, efficient and correct use of the gas, and the provision of emergency gas to another member of the dive team. The primary aim is to ensure that everyone has enough to breathe of a gas suitable for the current depth at all times, and is aware of the gas mixture in use and its effect on decompression obligations, nitrogen narcosis, and oxygen toxicity risk. Some of these functions may be delegated to others, such as the filling of cylinders, or transportation to the dive site, but others are the direct responsibility of the diver using the gas.
A scuba cylinder valve or pillar valve is a high pressure manually operated screw-down shut off valve fitted to the neck of a scuba cylinder to control breathing gas flow to and from the pressure vessel and to provide a connection with the scuba regulator or filling whip. Cylinder valves are usually machined from brass and finished with a protective and decorative layer of chrome plating. A metal or plastic dip tube or valve snorkel screwed into the bottom of the valve extends into the cylinder to reduce the risk of liquid or particulate contaminants in the cylinder getting into the gas passages when the cylinder is inverted, and blocking or jamming the regulator.
The mechanism of diving regulators is the arrangement of components and function of gas pressure regulators used in the systems which supply breathing gases for underwater diving. Both free-flow and demand regulators use mechanical feedback of the downstream pressure to control the opening of a valve which controls gas flow from the upstream, high-pressure side, to the downstream, low-pressure side of each stage. Flow capacity must be sufficient to allow the downstream pressure to be maintained at maximum demand, and sensitivity must be appropriate to deliver maximum required flow rate with a small variation in downstream pressure, and for a large variation in supply pressure, without instability of flow. Open circuit scuba regulators must also deliver against a variable ambient pressure. They must be robust and reliable, as they are life-support equipment which must function in the relatively hostile seawater environment, and the human interface must be comfortable over periods of several hours.
{{cite journal}}
: CS1 maint: unfit URL (link){{cite book}}
: CS1 maint: numeric names: authors list (link)"Gas cylinders - Seamless steel gas cylinders - Periodic inspection and testing" (PDF). ISO 6406:2005(E). Geneva: Onternational Standards Organisation. 2005. Retrieved 4 August 2016.
"Gas cylinders - Seamless aluminium-alloy gas cylinders - Periodic inspection and testing". ISO 10461:2005(E). Geneva: International Standards Organisation. 2005. Retrieved 5 August 2016.