Backplate and wing

Last updated
Backplate and wing
Diving backplate.jpg
A stainless steel backplate, wing and manifolded twinset
UsesScuba harness and buoyancy compensator
Related items Buoyancy compensator (diving)

A backplate and wing (often abbreviated as BP&W or BP/W) is a type of scuba harness with an attached buoyancy compensation device (BCD) which establishes neutral buoyancy underwater and positive buoyancy on the surface. Unlike most other BCDs, the backplate and wing is a modular system, in that it consists of separable components. The core components of this system are:

Contents

Function

The backplate and wing combination is a modular form of scuba harness and back mounted buoyancy compensator used by scuba divers to support the diving cylinder and buoyancy compensator bladder on the diver's back. It also provides attachment points for accessory equipment such as auxiliary scuba sets for decompression or bailout, lights, cutting tool and guideline reel.

Configuration

Backplate with wing style B.C. and scuba set & harness
Regulator first stage
Cylinder valve
Shoulder straps
Buoyancy compensator bladder
Relief and bottom manual dump valve
Regulator second stages (with "octopus")
Console (pressure gauge, depth gauge & compass)
Dry-suit inflator hose
Backplate
BC inflator hose
Oral inflation mouthpiece and manual dump valve
Crotch strap
Waist strap Plongee-StabilisateurDorsal 20090220 PlaqueLacasse.jpeg
Backplate with wing style B.C. and scuba set & harness
  1. Regulator first stage
  2. Cylinder valve
  3. Shoulder straps
  4. Buoyancy compensator bladder
  5. Relief and bottom manual dump valve
  6. Regulator second stages (with "octopus")
  7. Console (pressure gauge, depth gauge & compass)
  8. Dry-suit inflator hose
  9. Backplate
  10. BC inflator hose
  11. Oral inflation mouthpiece and manual dump valve
  12. Crotch strap
  13. Waist strap

Harness

The basic harness comprises two lengths of 2" (50mm) webbing: One is woven through the slots in the backplate to form closed shoulder loops and an open waist strap, with a weightbelt-type lever action buckle for securing the waist strap,

The second section of webbing forms a crotch strap, running from the bottom of the backplate, between the diver's legs, and up to the waist strap, which would be passed through a loop at the front end of the crotch strap. This harness is sometimes referred to as a one-piece harness, due to the shoulder and waist straps being made from a single piece of webbing.

The harness is usually fitted with stainless steel D-rings secured by stainless steel "sliders", small slotted plates which hold their position by friction. A loop of elastic cord is normally attached at the same place as the left shoulder D-ring, to secure the wing's inflator hose.

This arrangement is extremely rugged, reliable and hard-wearing. [1]

This form of harness may be adjusted to fit different builds of diver by shortening the webbing used to tighten the harness, or installing a new longer section of webbing to loosen the harness. Once adjusted, some flexibility is still allowed by positioning the buckle, which can change the effective length of the waist strap depending on where it is secured.

The harness webbing can be replaced at home with no special tools when the webbing wears through or is damaged, and other components can be easily replaced. This makes this style of harness very economical over the long term.

Harness accessories

  • D-rings or a functional equivalent are usually fitted to the waistbelt, shoulder straps and crotch strap to secure stage cylinders, additional equipment, and clipping off demand valves, light heads, and submersible pressure gauges which are not currently being used. The number and position of these D-rings can be adjusted by the user, but there are a few positions which have become fairly standard. [1]
    • Left and right shoulder strap at roughly the height of the collar bone in front.
    • Left hip just forward of the backplate.
    • Crotch strap at the back and front. The front one is used for a tow-line when scootering
  • Weight holders are available for integrated weight systems which can be slid over the waist belt.
  • Canister lights can be carried on the waist belt. The standard position is on the right side.
  • A small diver's knife or cutting tool is commonly carried on the left side alongside the buckle.
  • Backup lights are generally clipped to the shoulder D-rings and held against the shoulder straps by rubber bands cut from bicycle inner tubes. Other methods are possible, but the inner tubes work and are easily replaced when they wear out.

Many variations to this basic harness are used, and these may include:

  • Differing number or positioning of D-rings.
  • Shoulder straps that cross behind the diver's neck.
  • No crotch strap.
  • An additional chest strap, which crosses the diver's sternum.
  • For divers who find it difficult to get the harness on or off, a buckle may be fitted to one or both of the shoulder straps. The left shoulder strap is particularly convenient because this is the side where most dry suits have the auto-dump valve, which tends to snag on the harness.
  • Neoprene padding tubes are used over the shoulder straps by some divers for comfort.

Some manufacturers offer alternative harnesses, often marketed as “deluxe” options, which may include the above variations.

Omitting the buoyancy bladder reduces the setup to a plain backpack harness if the breathing set needs to be used on land. However, the standard bent sheet-metal backplate is ergonomically unsuited to this function.

Backplate

The backplate is usually made from a single piece of stainless steel or anodised aluminium, bent along four lines to form a channel running vertically down the center. The plate is about 15” (38 cm) long and 10” (25 cm) wide. There are two slots near each of the shoulders and hips, where the harness passes through, and another slot at the bottom of the plate where the crotch strap attaches. There is also one or more pairs of holes in the channel to be used for cylinder attachment; the holes of each pair are usually 11” apart.

A variation on this design uses another two parallel bends to form a shallow trough down the back of the central channel, which stabilises a single cylinder strapped to the centreline.

Steel backplates are commonly used when the buoyancy of the diver's other equipment (primarily cylinders and exposure protection) would need a weightbelt, as the negative buoyancy of the steel plate can replace some of this weight. Aluminium backplates are commonly used when the diver would not require a weightbelt (such as when wearing heavy steel cylinders) or when the mass of the backplate must be kept low for air travel. Backplates are occasionally made from other materials, including carbon fiber reinforced plastics, titanium, and ABS plastic.

Lightweight versions of the backplate are available with inessential areas cut away to reduce the weight. When taken to the extreme, a single cylinder is used as the longitudinal stiffener, and the backplate is reduced to a skeletal frame at the level of the waist belt, which stabilizes the cylinder against rolling on the diver's back.

Wing

The wing is an inflatable buoyancy bladder, similar to that in other varieties of BCD, except that it is not in or permanently attached to the harness part of a BCD. As with other BCDs, wings have an inflation valve on a corrugated hose, dump valve, and over pressure valve. Wings are usually oval (annular, doughnut or toroidal) or U-shaped (horseshoe), and are designed to wrap slightly around the diving cylinder(s) when inflated.

Wings are usually designed to be used with either a single diving cylinder or twin cylinders, although some manufacturers make wings that they recommend for both single and twin cylinder diving. Single-cylinder wings are most commonly oval-shaped and are relatively narrow, and twin-cylinder wings are more likely to be U-shaped and are wider.

Some wings, known as bungee wings, incorporate elastic to constrain the wing when it is less than completely full and accelerate air dumping. These wings usually have elastic bands or cords wrapping the bladder area, but some designs use an elasticised shell or cords along a bellows fold gusset. Arguments for and against are:

Some manufacturers, such as OMS and Dive Rite make both and let the purchaser choose which style they prefer. The style which uses elastic only on the side gussets is more streamlined and smoother than the full wrap bungee style.

Another variety, the dual bladder wing, contains a second, redundant bladder and inflation assembly, with the second bladder being intended for use if the primary bladder fails, either through a puncture, or through an inflation valve failing. Some technical divers may choose a dual bladder wing to have backup redundancy if the primary bladder fails. Detractors of this arrangement point out that if the extra bladder is inadvertently inflated, the diver may not realise that this has occurred, and it may result in an uncontrolled buoyant ascent, with a risk of fatal injury. This risk may be reduced by having only oral inflation for the backup wing, or requiring the same low pressure inflator hose to be used for both wings, and having the backup bladder inflation on the opposite side to the primary bladder.

The wing may be a single or double skin unit. A single skin wing uses the same material for structure and holding the air, while a double skin arrangement uses an airtight bladder in a structural casing of strong but porous textile. Single skin construction is simpler, and usually uses RF welding to make the seams. These bladders are usually lighter and dry out more quickly than double skin wings, but if the bladder is punctured, a new bladder is relatively easily fitted to a double skin wing, while repair of the single skin bladder may not be practicable, depending on material and construction details, and the location and extent of the damage. Single skin wings are also easier to decontaminate, particularly if the outer surface is smooth. Single skin wings may use a bellows fold gusset to increase inflatable volume while retaining a relatively compact outline. This can reduce drag while swimming when the bladder is deflated.

Cylinder attachment

When a backplate is used with a single cylinder, a single tank adapter, or STA, is usually used. The STA is a small metal structure that bolts onto the backplate on the outside of the wings, contains two camstraps, and accommodates the cylinder. Use of a single tank adaptor slightly increases the profile height of the assembly and may affect the centre of gravity which may affect trim. In some cases the increase in height may be undesirable.

In some instances, the STA may be omitted, and the camstraps threaded through the wing and backplate. In these cases, the wing will contain a built-in STA in the form of two rods or pads which stabilise the cylinder, or the backplate may be made with a slight channel in the central ridge to hold the single cylinder.

Twin cylinders are usually attached to the backplate via bolts, passing through the cylinder bands, and secured by nuts in the central channel of the backplate. An alternative is to use two sets of camstraps and extra slots in the backplate and wing. This arrangement will allow convenient attachment of independent cylinders of almost any size without use of cylinder bands.

Some rebreather divers fit backplates to their rebreathers. The exact method of attachment varies between users and rebreather models, and may include modification to the rebreather or using a customised backplate. Some rebreathers are designed specifically for use with backplates.

Ancillary equipment

The backplate and wing is a minimalistic system, however it does facilitate addition of other equipment. Ancillary equipment, commonly attached to the backplate and wing includes:

Much of this equipment is difficult or impossible to attach to other styles of BCD.

Hogarthian configuration

The "Hogarthian rig" configuration is a specific version of the backplate and wing arrangement developed largely by William Hogarth Main and other members of the Woodville Karst Plain Project as particularly suited to the diving conditions of the Florida caves, and adopted by the DIR scuba movement as an all-purpose scuba configuration.

Images

Comparison with alternative equipment

The predominant type of BCD currently used in recreational diving is the jacket style BCD. The backplate and wing differs from the jacket style primarily in the way that the functions required of a BCD (attachment to diver, buoyancy control and attachment to cylinder(s)) are performed by distinct components, rather than a single unit. The most significant effects of this division are shifting the buoyancy bladder from the diver's chest to their back and the modularity of the system, allowing buoyancy cells, harnesses, and plates to be interchanged as needed. The buoyancy of a backplate is often significantly negative, especially when the plate is made from stainless steel, and so can replace some of the weight that would otherwise be worn on a weightbelt. Ancillary features that would often be present in jacket BCDs, such as pockets or weight integration, are not found in the core system of a backplate and wing, but can be added as additional components if desired.

Other types of BCD exist which more resemble backplate and wing BCD. Back-inflation BCDs are similar in construction to jacket BCDs, except for where the buoyancy cell is. In a back-inflation BCD, as with a backplate and wing, the cell is behind the diver's back, and is of similar shape to a wing, but a back-inflation BCD usually does not have the modularity of a backplate and wing, although some models let buoyancy cells be substituted.

Softpack BCDs are another style closer still to backplate and wing BCDs. Softpacks, like backplates, are designed to be modular, and are often marketed towards technical divers. A softpack consists of a padded semi-rigid section that serves that same purpose as a backplate, and uses a harness that is either replaceable, like a backplate harness, or permanently fixed. Softpacks may be used with the same models of wings that are used with backplates. The primary differences between these and backplates are the lack of a rigid plate and possible non-separability of the softpack and harness. The relatively low density of the softpack usually necessitates more ballast weight.

A minimalist form of softpack harness is a set of webbing straps much like that of the backplate, but with a webbing strap instead of the plate. This strap may be formed by stitching or threading through sliders a double layer of webbing with slots between the layers which the cambands pass through, and the wing is sandwiched between harness and cylinder. There is no need for a plate, as the cylinder forms the rigid part of the assembly. This arrangement is best suited to single cylinders, and can be made very compact and light for travelling. In some cases a stabiliser plate may be included at the base of the vertical strap, and the harness shoulder and waistband straps thread through this as is done on the standard backplate.


History

Early scuba sets were simply a set of harness straps connected to a cylinder or manifolded group of cylinders, with a regulator connected to the cylinder valve. This works quite satisfactorily for twin and triple sets, which are inherently quite stable on the back, and have little tendency to roll from side to side.

A simple backplate solved the rolling problem, and was often developed into a more ergonomically formed metal, fibreglass, or later, blow-moulded plastic backplate. These usually used simple webbing harness, and were cheap, reliable, and easily repaired. They were usually dedicated to the cylinder, but later versions allowed quick release and attachment of other cylinders. As stabiliser jacket buoyancy compensators became popular, the harness system was integrated with the jacket structure, to simplify the structure and make it easier to use and more comfortable. Eventually most harness systems became more complex and less easy to repair by the user. They also became more bulky over the chest area than the original simple harness systems.

Cave divers found that the bulkiness of the stabiliser jackets over the front and sides of the torso got in the way of suspending additional cylinders at their sides for bailout and decompression gases.

Safety

It is possible for the cylinder or cylinders to become loose from the backplate if the securing nuts are insufficiently tightened and one works loose during the dive. This can lead to the wing moving from the balanced central position to an offset to one side, as it is held in place against the backplate by the cylinder. This can cause buoyancy and trim problems. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Scuba set</span> Self-contained underwater breathing apparatus

A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness or rigging by which it is carried and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge. In the looser sense, scuba set has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface-supplied diving systems and is allowed by the relevant legislation and code of practice.

<span class="mw-page-title-main">Buoyancy compensator (diving)</span> Equipment for controlling the buoyancy of a diver

A buoyancy compensator (BC), also called a buoyancy control device (BCD), stabilizer, stabilisor, stab jacket, wing or adjustable buoyancy life jacket (ABLJ), depending on design, is a type of diving equipment which is worn by divers to establish neutral buoyancy underwater and positive buoyancy at the surface, when needed.

<span class="mw-page-title-main">Surface marker buoy</span> Buoy towed by a scuba diver to indicate the divers position

A surface marker buoy, SMB, dive float or simply a blob is a buoy used by scuba divers, at the end of a line from the diver, intended to indicate the diver's position to people at the surface while the diver is underwater. Two kinds are used; one (SMB) is towed for the whole dive, and indicates the position of the dive group throughout the dive, and the other, a delayed surface marker buoy, DSMB or decompression buoy, is deployed towards the end of the dive as a signal to the surface that the divers have started to ascend, and where they are going to surface. Both types can also function as a depth reference for controlling speed of ascent and accurately maintaining depth at decompression stops. Surface marker buoys are also used by freedivers in open water, to indicate the approximate position of the diver when submerged. They may also be used to support a catch bag or fish stringer by underwater hunters and collectors. A DSMB is considered by recreational scuba divers and service providers to be a highly important item of safety equipment, yet its use is not part of the entry level recreational diver training for all training agencies, and there are significant hazards associated with incompetent use.

<span class="mw-page-title-main">Standard diving dress</span> Copper helmet with rubberised canvas diving suit and weighted boots

Standard diving dress, also known as hard-hat or copper hat equipment, deep sea diving suit or heavy gear, is a type of diving suit that was formerly used for all relatively deep underwater work that required more than breath-hold duration, which included marine salvage, civil engineering, pearl shell diving and other commercial diving work, and similar naval diving applications. Standard diving dress has largely been superseded by lighter and more comfortable equipment.

<span class="mw-page-title-main">Surface-supplied diving</span> Underwater diving breathing gas supplied from the surface

Surface-supplied diving is a mode of underwater diving using equipment supplied with breathing gas through a diver's umbilical from the surface, either from the shore or from a diving support vessel, sometimes indirectly via a diving bell. This is different from scuba diving, where the diver's breathing equipment is completely self-contained and there is no essential link to the surface. The primary advantages of conventional surface supplied diving are lower risk of drowning and considerably larger breathing gas supply than scuba, allowing longer working periods and safer decompression. Disadvantages are the absolute limitation on diver mobility imposed by the length of the umbilical, encumbrance by the umbilical, and high logistical and equipment costs compared with scuba. The disadvantages restrict use of this mode of diving to applications where the diver operates within a small area, which is common in commercial diving work.

<span class="mw-page-title-main">Diving weighting system</span> Ballast carried by underwater divers and diving equipment to counteract excess buoyancy

A diving weighting system is ballast weight added to a diver or diving equipment to counteract excess buoyancy. They may be used by divers or on equipment such as diving bells, submersibles or camera housings.

<span class="mw-page-title-main">Buddy check</span> Pre-dive safety checks carried out by two-diver dive teams

The buddy check is a procedure carried out by scuba divers using the buddy system where each diver checks that the other's diving equipment is configured and functioning correctly just before the start of the dive. A study of pre-dive equipment checks done by individual divers showed that divers often fail to recognize common equipment faults. By checking each other's equipment as well as their own, it is thought to be more likely that these faults will be identified prior to the start of the dive.

<span class="mw-page-title-main">Siebe Gorman CDBA</span> Type of diving rebreather used by the Royal Navy

The Clearance Divers Breathing Apparatus (CDBA) is a type of rebreather made by Siebe Gorman in England.

<span class="mw-page-title-main">Siebe Gorman Salvus</span> Industrial rescue and shallow water oxygen rebreather

The Siebe Gorman Salvus is a light oxygen rebreather for industrial use or in shallow diving. Its duration on a filling is 30 to 40 minutes. It was very common in Britain during World War II and for a long time afterwards. Underwater the Salvus is very compact and can be used where a diver with a bigger breathing set cannot get in, such as inside cockpits of ditched aircraft. It was made by Siebe Gorman & Company, LTD in London, England. It was designed in the early 1900s.

<span class="mw-page-title-main">Sidemount diving</span> Diving using equipment configuration where scuba sets are clipped to the divers sides

Sidemount is a scuba diving equipment configuration which has scuba sets mounted alongside the diver, below the shoulders and along the hips, instead of on the back of the diver. It originated as a configuration for advanced cave diving, as it facilitates penetration of tight sections of cave, allows easy access to cylinder valves, provides easy and reliable gas redundancy, and tanks can be easily removed when necessary. These benefits for operating in confined spaces were also recognized by divers who conducted technical wreck diving penetrations.

<span class="mw-page-title-main">Diving equipment</span> Equipment used to facilitate underwater diving

Diving equipment, or underwater diving equipment, is equipment used by underwater divers to make diving activities possible, easier, safer and/or more comfortable. This may be equipment primarily intended for this purpose, or equipment intended for other purposes which is found to be suitable for diving use.

<span class="mw-page-title-main">Bailout bottle</span> Emergency gas supply cylinder carried by a diver

A bailout bottle (BoB) or, more formally, bailout cylinder is a scuba cylinder carried by an underwater diver for use as an emergency supply of breathing gas in the event of a primary gas supply failure. A bailout cylinder may be carried by a scuba diver in addition to the primary scuba set, or by a surface supplied diver using either free-flow or demand systems. The bailout gas is not intended for use during the dive except in an emergency, and would be considered a fully redundant breathing gas supply if used correctly. The term may refer to just the cylinder, or the bailout set or emergency gas supply (EGS), which is the cylinder with the gas delivery system attached. The bailout set or bailout system is the combination of the emergency gas cylinder with the gas delivery system to the diver, which includes a diving regulator with either a demand valve, a bailout block, or a bailout valve (BOV).

<span class="mw-page-title-main">Scuba gas planning</span> Estimation of breathing gas mixtures and quantities required for a planned dive profile

Scuba gas planning is the aspect of dive planning and of gas management which deals with the calculation or estimation of the amounts and mixtures of gases to be used for a planned dive. It may assume that the dive profile, including decompression, is known, but the process may be iterative, involving changes to the dive profile as a consequence of the gas requirement calculation, or changes to the gas mixtures chosen. Use of calculated reserves based on planned dive profile and estimated gas consumption rates rather than an arbitrary pressure is sometimes referred to as rock bottom gas management. The purpose of gas planning is to ensure that for all reasonably foreseeable contingencies, the divers of a team have sufficient breathing gas to safely return to a place where more breathing gas is available. In almost all cases this will be the surface.

<span class="mw-page-title-main">Diver trim</span> Balance and orientation skills of an underwater diver

The trim of a diver is the orientation of the body in the water, determined by posture and the distribution of weight and volume along the body and equipment, as well as by any other forces acting on the diver. Both static trim and its stability affect the convenience and safety of the diver while under water and at the surface. Midwater trim is usually considered at approximately neutral buoyancy for a swimming scuba diver, and neutral buoyancy is necessary for efficient maneuvering at constant depth, but surface trim may be at significant positive buoyancy to keep the head above water.

<span class="mw-page-title-main">Scuba skills</span> The skills required to dive safely using a self-contained underwater breathing apparatus.

Scuba skills are skills required to dive safely using self-contained underwater breathing apparatus, known as a scuba set. Most of these skills are relevant to both open-circuit scuba and rebreather scuba, and many also apply to surface-supplied diving. Some scuba skills, which are critical to divers' safety, may require more practice than standard recreational training provides to achieve reliable competence.

<span class="mw-page-title-main">Doing It Right (scuba diving)</span> Technical diving safety philosophy

Doing It Right (DIR) is a holistic approach to scuba diving that encompasses several essential elements, including fundamental diving skills, teamwork, physical fitness, and streamlined and minimalistic equipment configurations. DIR proponents maintain that through these elements, safety is improved by standardizing equipment configuration and dive-team procedures for preventing and dealing with emergencies.

<span class="mw-page-title-main">Surface-supplied diving equipment</span> Equipment used specifically for surface supplied diving

Surface-supplied diving equipment (SSDE) is the equipment required for surface-supplied diving. The essential aspect of surface-supplied diving is that breathing gas is supplied from the surface, either from a specialised diving compressor, high-pressure gas storage cylinders, or both. In commercial and military surface-supplied diving, a backup source of surface-supplied breathing gas should always be present in case the primary supply fails. The diver may also wear a bailout cylinder which can provide self-contained breathing gas in an emergency. Thus, the surface-supplied diver is less likely to have an "out-of-air" emergency than a scuba diver using a single gas supply, as there are normally two alternative breathing gas sources available. Surface-supplied diving equipment usually includes communication capability with the surface, which improves the safety and efficiency of the working diver.

<span class="mw-page-title-main">History of scuba diving</span> History of diving using self-contained underwater breathing apparatus

The history of scuba diving is closely linked with the history of the equipment. By the turn of the twentieth century, two basic architectures for underwater breathing apparatus had been pioneered; open-circuit surface supplied equipment where the diver's exhaled gas is vented directly into the water, and closed-circuit breathing apparatus where the diver's carbon dioxide is filtered from the exhaled breathing gas, which is then recirculated, and more gas added to replenish the oxygen content. Closed circuit equipment was more easily adapted to scuba in the absence of reliable, portable, and economical high pressure gas storage vessels. By the mid-twentieth century, high pressure cylinders were available and two systems for scuba had emerged: open-circuit scuba where the diver's exhaled breath is vented directly into the water, and closed-circuit scuba where the carbon dioxide is removed from the diver's exhaled breath which has oxygen added and is recirculated. Oxygen rebreathers are severely depth limited due to oxygen toxicity risk, which increases with depth, and the available systems for mixed gas rebreathers were fairly bulky and designed for use with diving helmets. The first commercially practical scuba rebreather was designed and built by the diving engineer Henry Fleuss in 1878, while working for Siebe Gorman in London. His self contained breathing apparatus consisted of a rubber mask connected to a breathing bag, with an estimated 50–60% oxygen supplied from a copper tank and carbon dioxide scrubbed by passing it through a bundle of rope yarn soaked in a solution of caustic potash. During the 1930s and all through World War II, the British, Italians and Germans developed and extensively used oxygen rebreathers to equip the first frogmen. In the U.S. Major Christian J. Lambertsen invented a free-swimming oxygen rebreather. In 1952 he patented a modification of his apparatus, this time named SCUBA, an acronym for "self-contained underwater breathing apparatus," which became the generic English word for autonomous breathing equipment for diving, and later for the activity using the equipment. After World War II, military frogmen continued to use rebreathers since they do not make bubbles which would give away the presence of the divers. The high percentage of oxygen used by these early rebreather systems limited the depth at which they could be used due to the risk of convulsions caused by acute oxygen toxicity.

Investigation of diving accidents includes investigations into the causes of reportable incidents in professional diving and recreational diving accidents, usually when there is a fatality or litigation for gross negligence.

References

  1. 1 2 Jablonski, Jarrod (2006). "Details of DIR Equipment Configuration". Doing it Right: The Fundamentals of Better Diving. High Springs, Florida: Global Underwater Explorers. ISBN   0-9713267-0-3.
  2. Buzzacott, Peter. "Buoyancy wing comes loose during dive" . Retrieved 2 October 2018.