Umbilical cable

Last updated
Umbilical cable
130319-G-JY570-044 (8773395541).jpg
Diver with surface-supplied umbilical
Other namesUmbilical, diver's umbilical, ROV umbilical, spacecraft umbilical
UsesPower and consumables supply, communications and instrumentation cables
Related items Air line, lifeline, power cable, control cable

An umbilical cable or umbilical is a cable and/or hose that supplies required consumables to an apparatus, like a rocket, or to a person, such as a diver or astronaut. It is named by analogy with an umbilical cord. An umbilical can, for example, supply air and power to a pressure suit or hydraulic power, electrical power and fiber optics to subsea equipment and divers.

Contents

Spaceflight applications

Rockets

Umbilicals connect a missile or space vehicle to ground support equipment on the launch pad before launch. Cables carry electrical power, communications, and telemetry, and pipes or hoses carry liquid propellants, cryogenic fluids, and pressurizing and purge gases. These are automatically disconnected shortly before or at launch.[ citation needed ]

Umbilical connections are also used between rocket stages, and between the rocket and its spacecraft payload; these umbilicals are disconnected as stages are disconnected and discarded.[ citation needed ]

Space suits

Gemini astronaut with umbilical Ed White with Space Gun maneuvering unit.jpg
Gemini astronaut with umbilical

Early space suits used in Project Gemini in 1965 and 1966 employed umbilicals to the spacecraft to provide suit oxygen and communications during extravehicular activity (EVA). (Soviet cosmonaut Alexei Leonov performed the first EVA using a self-contained oxygen backpack, and thus did not require an umbilical.) Later designs (first used on the Apollo program lunar EVA in 1969) did not need spacecraft umbilicals, instead employing backpacks for self-contained oxygen, electric batteries, and radio communication.[ citation needed ]

Subsea applications

Subsea umbilicals are deployed on the seabed (ocean floor) to supply necessary control, energy (electric, hydraulic) and chemicals to subsea oil and gas wells, subsea manifolds and any subsea system requiring remote control, such as a remotely operated vehicle. Subsea intervention umbilicals are also used for offshore drilling or workover activities.[ citation needed ]

Diver

Umbilical for diver US Navy 100712-N-9769P-353 Navy Diver 1st Class Joel Sharp, left, assigned to Mobile Diving and Salvage Unit (MDSU) 2.jpg
Umbilical for diver

A diver's umbilical is a group of components which supply breathing gas and other services from the surface control point to a diver. It is part of the life support system and will usually be inspected before use, and maintained and tested at specified intervals. [1] The umbilical components are connected to the appropriate connectors on the diver's equipment, mostly on the helmet or full-face mask, and the strength member is usually attached to a strong D-ring on the diver's harness using a screw-gate carabiner or similar connector which will not accidentally release or snag on lines. The US Navy specify a snap-shackle for this function. [2] [3]

For shallow water surface supply air diving, the diver's umbilical is typically a 3-part umbilical comprising a 38 inch (9.5 mm) bore breathing gas hose, 14 inch (6.4 mm) bore pneumofathometer ("pneumo") hose, and diver communications cable, which usually also serves as a lifeline strength member. The pneumo hose is open at the diver's end and the other end is connected to a pressure gauge on the surface gas panel, where the supervisor can use it to measure the diver's depth in the water at any time. This is done by measuring pressure of the air in the pneumo hose after a thin stream of bubbles has been emitted from the open end which ensures that the hose has been purged of water so that the internal gas pressure is effectively constant and equal to the ambient pressure at the open end. The umbilical serves as a lifeline and must be capable of lifting the diver out of the water safely. [1] Maximum permitted service life for rubber breathing air hoses is 12 years, but synthetic (unfilled polyurethane elastomer) lined hoses may be used without time limit while in good condition as long as they pass inspection and testing. Hot water supply hoses are more likely to be rubber lined, and polyurethane external sheathing is common for all umbilical hoses and cables. [2] [3]

A typical 4-part diver umbilical will also have a 12 inch (13 mm) bore hot water supply hose for the diver's exposure suit. A 5-part diver umbilical will also include a video cable to allow the surface controller to see the video picture transmitted to the surface from the diver's hat camera (video camera mounted on the helmet, facing forward, with a field of vision similar to that of the diver). [3]

An excursion umbilical from a wet bell would be similar in construction, but shorter than an umbilical supplied directly from the surface for similar work. For saturation diving from a closed bell, a diver excursion umbilical includes a breathing gas supply hose, 58 inch (16 mm) gas reclaim hose, hot water hose, pneumofathometer hose, voice communications and lifeline cable, video cable and helmet light power cable.

Early diver umbilicals were simply the individual components bundled together and taped every metre or so with duct tape. These bundles tend to distort and produce kinks in the components caused by bending (particularly dangerous if the kink is in the divers gas supply hose), and require frequent maintenance. More recent umbilicals usually comprise all the components laid together like a twisted rope, so that there is little chance of a kink, no separate lifeline component is required, and no tape is required to hold the umbilical together. An additional component such as a video cable for a diver's camera, or a hat light cable, can be added by manually wrapping this additional component into the lay of the existing cabled umbilical. When there is risk of the umbilical cable being damaged by scratching on rock, coral or wreckage, the umbilical bundle may be over-braided with a polypropylene braid cover, or a velcro fastened textile cover. [2] [3]

Umbilical Cable and Surface-supplied Dive Helmet Umbilical Cable Dive Equipment in Dive Boat McLaren Engineering Group.jpg
Umbilical Cable and Surface-supplied Dive Helmet

The length of the diver's umbilical will depend on the operational parameters. As a general rule a short umbilical is cheaper and more manageable than a longer one, and provided that it is long enough, shorter is generally safer. The standby diver or bellman's umbilical should generally be about 2 metres (6.6 ft) longer than that of the working diver to allow easy access to the diver in an emergency. A common length established by custom and experience is 30 metres (98 ft) for a closed bell diver's umbilical, but this may be varied when circumstances require. For surface oriented work it is often necessary to use a longer umbilical. Deployable length may be controlled by tying off the umbilical at the rack to reduce the risk of the diver approaching known hazards too closely. The IMCA specification is 5 metres (16 ft) minimum distance from a hazard. [1]

The factors that influence length of a surface oriented umbilical include: [1]

Diver umbilicals may be negatively buoyant, neutral or positive, depending on the operational requirements. It is a common practice to mark them at length intervals using colour coded tape. [1]

Diving bell

Bell umbilical section Bell umbilical section 20151203 132411.jpg
Bell umbilical section

Both wet bells and closed bells use a bell umbilical to provide surface-supplied gas, electrical power, communications and heating water to the bell and through the bell gas panel to the divers. It may also return reclaimed breathing gas from the divers to the surface gas system. The bell umbilical is generally not intended for lifting the bell. The bell umbilical is connected to through-hull fittings on a closed bell, which are connected to the bell panel inside, for distribution to the interior of the bell and to the divers via the diver's umbilicals. The bell gas panel is operated by the bellman. [1] [4]

A closed-bell handling system includes a bell umbilical handling system, which deploys, recovers and stores the umbilical. [5]

ROV

Most ROVs are linked to a host ship by a neutrally buoyant tether or a load-carrying umbilical cable is used along with a tether management system (TMS). The TMS is either a garage-like device which contains the ROV during lowering through the splash zone or, on larger work-class ROVs, a separate assembly mounted on top of the ROV. The purpose of the TMS is to lengthen and shorten the tether so the effect of cable drag where there are underwater currents is minimized. The umbilical cable is an armored cable that contains a group of electrical conductors and fiber optics that carry electric power, video, and data signals between the operator and the TMS. Where used, the TMS relays the signals and power for the ROV down the tether cable. Once at the ROV, the power is distributed between the electrical components.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Ice diving</span> Underwater diving under ice

Ice diving is a type of penetration diving where the dive takes place under ice. Because diving under ice places the diver in an overhead environment typically with only a single entry/exit point, it requires special procedures and equipment. Ice diving is done for purposes of recreation, scientific research, public safety and other professional or commercial reasons.

<span class="mw-page-title-main">Remotely operated underwater vehicle</span> A tethered underwater mobile device operated by a remote crew

A remotely operated underwater vehicle (ROUV) or remotely operated vehicle (ROV) is a free-swimming submersible craft used to perform underwater observation, inspection and physical tasks such as valve operations, hydraulic functions and other general tasks within the subsea oil and gas industry, military, scientific and other applications. ROVs can also carry tooling packages for undertaking specific tasks such as pull-in and connection of flexible flowlines and umbilicals, and component replacement.

<span class="mw-page-title-main">Surface-supplied diving</span> Underwater diving breathing gas supplied from the surface

Surface-supplied diving is a mode of underwater diving using equipment supplied with breathing gas through a diver's umbilical from the surface, either from the shore or from a diving support vessel, sometimes indirectly via a diving bell. This is different from scuba diving, where the diver's breathing equipment is completely self-contained and there is no essential link to the surface. The primary advantages of conventional surface supplied diving are lower risk of drowning and considerably larger breathing gas supply than scuba, allowing longer working periods and safer decompression. Disadvantages are the absolute limitation on diver mobility imposed by the length of the umbilical, encumbrance by the umbilical, and high logistical and equipment costs compared with scuba. The disadvantages restrict use of this mode of diving to applications where the diver operates within a small area, which is common in commercial diving work.

<span class="mw-page-title-main">Saturation diving</span> Diving decompression technique

Saturation diving is diving for periods long enough to bring all tissues into equilibrium with the partial pressures of the inert components of the breathing gas used. It is a diving mode that reduces the number of decompressions divers working at great depths must undergo by only decompressing divers once at the end of the diving operation, which may last days to weeks, having them remain under pressure for the whole period. A diver breathing pressurized gas accumulates dissolved inert gas used in the breathing mixture to dilute the oxygen to a non-toxic level in the tissues, which can cause potentially fatal decompression sickness if permitted to come out of solution within the body tissues; hence, returning to the surface safely requires lengthy decompression so that the inert gases can be eliminated via the lungs. Once the dissolved gases in a diver's tissues reach the saturation point, however, decompression time does not increase with further exposure, as no more inert gas is accumulated.

<span class="mw-page-title-main">Diving bell</span> Chamber for transporting divers vertically through the water

A diving bell is a rigid chamber used to transport divers from the surface to depth and back in open water, usually for the purpose of performing underwater work. The most common types are the open-bottomed wet bell and the closed bell, which can maintain an internal pressure greater than the external ambient. Diving bells are usually suspended by a cable, and lifted and lowered by a winch from a surface support platform. Unlike a submersible, the diving bell is not designed to move under the control of its occupants, or to operate independently of its launch and recovery system.

<span class="mw-page-title-main">Diving support vessel</span> Ship used as a floating base for professional diving projects

A diving support vessel is a ship that is used as a floating base for professional diving projects. Basic requirements are the ability to keep station accurately and reliably throughout a diving operation, often in close proximity to drilling or production platforms, for positioning to degrade slowly enough in deteriorating conditions to recover divers without excessive risk, and to carry the necessary support equipment for the mode of diving to be used.

<span class="mw-page-title-main">Diver rescue</span> Rescue of a distressed or incapacitated diver

Diver rescue, usually following an accident, is the process of avoiding or limiting further exposure to diving hazards and bringing a diver to a place of safety. A safe place generally means a place where the diver cannot drown, such as a boat or dry land, where first aid can be administered and from which professional medical treatment can be sought. In the context of surface supplied diving, the place of safety for a diver with a decompression obligation is often the diving bell.

<span class="mw-page-title-main">Alternative air source</span> Emergency supply of breathing gas for an underwater diver

In underwater diving, an alternative air source, or more generally alternative breathing gas source, is a secondary supply of air or other breathing gas for use by the diver in an emergency. Examples include an auxiliary demand valve, a pony bottle and bailout bottle.

<span class="mw-page-title-main">Underwater breathing apparatus</span> Equipment which provides breathing gas to an underwater diver

Underwater breathing apparatus is equipment which allows the user to breathe underwater. The three major categories of ambient pressure underwater breathing apparatus are:

<span class="mw-page-title-main">Commercial offshore diving</span> Professional diving in support of the oil and gas industry

Commercial offshore diving, sometimes shortened to just offshore diving, generally refers to the branch of commercial diving, with divers working in support of the exploration and production sector of the oil and gas industry in places such as the Gulf of Mexico in the United States, the North Sea in the United Kingdom and Norway, and along the coast of Brazil. The work in this area of the industry includes maintenance of oil platforms and the building of underwater structures. In this context "offshore" implies that the diving work is done outside of national boundaries. Technically it also refers to any diving done in the international offshore waters outside of the territorial waters of a state, where national legislation does not apply. Most commercial offshore diving is in the Exclusive Economic Zone of a state, and much of it is outside the territorial waters. Offshore diving beyond the EEZ does also occur, and is often for scientific purposes.

<span class="mw-page-title-main">Emergency ascent</span> An ascent to the surface by a diver in an emergency

An emergency ascent is an ascent to the surface by a diver in an emergency. More specifically, it refers to any of several procedures for reaching the surface in the event of an out-of-gas emergency, generally while scuba diving.

<i>Stena Seaspread</i> diving accident Saturation diving bell incident with successful rescue in the North Sea in 1981

The Stena Seaspread diving accident occurred on 21 January 1981, when a diving bell containing two divers had its umbilical cord severed. Both divers were rescued.

<span class="mw-page-title-main">Surface-supplied diving skills</span> Skills and procedures required for the safe operation and use of surface-supplied diving equipment

Surface supplied diving skills are the skills and procedures required for the safe operation and use of surface-supplied diving equipment. Besides these skills, which may be categorised as standard operating procedures, emergency procedures and rescue procedures, there are the actual working skills required to do the job, and the procedures for safe operation of the work equipment other than diving equipment that may be needed.

<span class="mw-page-title-main">Surface-supplied diving equipment</span> Equipment used specifically for surface supplied diving

Surface-supplied diving equipment (SSDE) is the equipment required for surface-supplied diving. The essential aspect of surface-supplied diving is that breathing gas is supplied from the surface, either from a specialised diving compressor, high-pressure gas storage cylinders, or both. In commercial and military surface-supplied diving, a backup source of surface-supplied breathing gas should always be present in case the primary supply fails. The diver may also wear a bailout cylinder which can provide self-contained breathing gas in an emergency. Thus, the surface-supplied diver is less likely to have an "out-of-air" emergency than a scuba diver using a single gas supply, as there are normally two alternative breathing gas sources available. Surface-supplied diving equipment usually includes communication capability with the surface, which improves the safety and efficiency of the working diver.

<span class="mw-page-title-main">Outline of underwater diving</span> List of articles related to underwater diving grouped by topical relevance

The following outline is provided as an overview of and topical guide to underwater diving:

<span class="mw-page-title-main">Index of underwater diving: N–Z</span> Alphabetical listing of underwater diving related topics

The following index is provided as an overview of and topical guide to underwater diving: Links to articles and redirects to sections of articles which provide information on each topic are listed with a short description of the topic. When there is more than one article with information on a topic, the most relevant is usually listed, and it may be cross-linked to further information from the linked page or section.

Diving support equipment is the equipment used to facilitate a diving operation. It is either not taken into the water during the dive, such as the gas panel and compressor, or is not integral to the actual diving, being there to make the dive easier or safer, such as a surface decompression chamber. Some equipment, like a diving stage, is not easily categorised as diving or support equipment, and may be considered as either.

Diving procedures are standardised methods of doing things that are commonly useful while diving that are known to work effectively and acceptably safely. Due to the inherent risks of the environment and the necessity to operate the equipment correctly, both under normal conditions and during incidents where failure to respond appropriately and quickly can have fatal consequences, a set of standard procedures are used in preparation of the equipment, preparation to dive, during the dive if all goes according to plan, after the dive, and in the event of a reasonably foreseeable contingency. Standard procedures are not necessarily the only courses of action that produce a satisfactory outcome, but they are generally those procedures that experiment and experience show to work well and reliably in response to given circumstances. All formal diver training is based on the learning of standard skills and procedures, and in many cases the over-learning of the skills until the procedures can be performed without hesitation even when distracting circumstances exist. Where reasonably practicable, checklists may be used to ensure that preparatory and maintenance procedures are carried out in the correct sequence and that no steps are inadvertently omitted.

<span class="mw-page-title-main">Diving team</span> Group of people working together to enhance dive safety and achieve a task

A diving team is a group of people who work together to conduct a diving operation. A characteristic of professional diving is the specification for minimum personnel for the diving support team. This typically specifies the minimum number of support team members and their appointed responsibilities in the team based on the circumstances and mode of diving, and the minimum qualifications for specified members of the diving support team. The minimum team requirements may be specified by regulation or code of practice. Some specific appointments within a professional dive team have defined competences and registration may be required.

References

  1. 1 2 3 4 5 6 "10 - General diving procedures, Section 10.3 Diver's umbilicals". Guidance for diving supervisors IMCA D 022 (Revision 1 ed.). London, UK: International Marine Contractors Association. August 2016.
  2. 1 2 3 Technical Manual U.S. Navy Diving Umbilical (UBA Mk 20 and Mk 21) Description, materials, and assembly (PDF). SS521-AH-PRO-010 0910-LP-103-2583 Revision 1 (Report). Naval Sea Systems Command. 24 February 2005.
  3. 1 2 3 4 "Divex Diver Umbilicals" (PDF). Divex. Retrieved 20 March 2020.
  4. IMCA International Code of Practice for Offshore Diving - IMCA D 014 Rev. 2. London: International Marine Contractor's Association. February 2014.
  5. "13 - Closed bell diving". Guidance for diving supervisors IMCA D 022 (Revision 1 ed.). London, UK: International Marine Contractors Association. August 2016.