The Aerospace Corporation

Last updated
The Aerospace Corporation
Company type Nonprofit organization
Industry Aerospace
FoundedJune 3, 1960 (1960-06-03)
Headquarters Chantilly, Virginia, United States
Key people
Steve Isakowitz (President and CEO)
Paul Selva (Chairman)
Revenue US$1.29 billion (FY2023)
Number of employees
4,500+
Website aerospace.org

The Aerospace Corporation is an American nonprofit corporation that operates a federally funded research and development center (FFRDC). The corporation provides technical guidance and advice on all aspects of space missions to military, civil, and commercial customers. [1] As the FFRDC for national-security space, Aerospace works closely with organizations such as the United States Space Force (USSF) and the National Reconnaissance Office (NRO) to provide "objective technical analyses and assessments for space programs that serve the national interest". Although the USSF and NRO are primary customers, Aerospace performs work for civil agencies such as NASA and NOAA as well as international organizations and governments in the national interest. [2] Aerospace, as part of its charter, also provides expertise to commercial entities, both established companies and startups, domestically and abroad. [3]

Contents

History

On July 1, 1954, the Western Development Division (WDD) of the United States Air Force was established, under the command of Brig Gen Bernard A. Schriever. WDD was responsible for the development of the intercontinental ballistic missile. The Ramo-Wooldridge Corporation (RW) was identified as the civilian organization responsible for systems engineering for the ICBM program. Their Space Technology Laboratories (STL) was responsible for all missile tasks. Despite early successes, there was criticism from both government and industry on the role RW played as a system engineer, in particular, that RW held a privileged position with the Air Force. In 1958 RW merged with Thompson Products to become TRW and the Space Technology Laboratories became an independent subsidiary of TRW, but concerns regarding conflicts of interest persisted. In September 1959, United States Congress issued House Report 1121 which recommended that STL be converted into a non-profit institution. [4] Congress wanted the establishment of an organization, free from conflict of interest, to aid the Air Force in "applying the full resources of modern science and technology to the problem of achieving those continuing advances in ballistic missiles and military space systems." [5]

On June 3, 1960, Aerospace was established under the laws of the State of California as a nonprofit corporation. [6] [7] On June 25, 1960, at a press conference held at the U.S. Air Force Ballistic Missile Division headquarters in El Segundo, California, Lt. Gen. Bernard A. Schriever announced the "formation of a new nonprofit organization, The Aerospace Corporation, to serve the Air Force in the scientific and technical planning and management of missile-space programs." [8]

Among the earliest projects it supported were the Dyna-Soar orbital spaceplane, Project Mercury, and the man-rating of the Atlas (rocket) intercontinental ballistic missile. The Aerospace Corporation provided general systems engineering and technical direction for the Titan II missile, first tested in 1962, which became the launch vehicle for Project Gemini. Other notable projects of the 1960s include the advanced ballistic re-entry system (ABRES), the Air Force's Manned Orbiting Laboratory (MOL), the Defense Satellite Communications System (DSCS), and the Defense Support Program (DSP).

During the 1970s, Aerospace began performing advanced space program analysis and program studies for NASA's development of the Space Transportation System (STS), more commonly known as the Space Shuttle. Aerospace also began tests on airborne UHF terminals for the Air Force Satellite Communications System, AFSATCOM. In the mid-70s Aerospace assumed general systems engineering and integration responsibility for the Defense Meteorological Satellite Program (DMSP). Beginning in 1973, a program office was established to assist the Air Force in the creation of the Global Positioning System (GPS). In recognition of their GPS collaboration, Aerospace shared the 1992 Robert J. Collier Trophy, the nation's highest award for aeronautical achievement, "for the most significant development for safe and efficient navigation and surveillance of air and spacecraft since the introduction of radio navigation 50 years ago." [9]

Throughout the 1980s, Aerospace supported the Inertial Upper Stage (IUS), the Strategic Defense Initiative (SDI), the Milstar and DSCS satellite communication systems, and antisatellite (ASAT) programs. They provided planning, design, and evaluation for the Air Force Satellite Control Network (AFSCN) and the Consolidated Space Operations Center at Schriever Air Force Base in Colorado. During this same time period, the company also provided systems engineering and integration for launch vehicles, including the Atlas, Titan II, Titan IV, and Delta II.

In the 1990s, Aerospace participated in the planning and development of system requirements for the Evolved Expendable Launch Vehicle (EELV) program, the next generation of launch vehicles. They continued to provide launch vehicle systems engineering for the Atlas II, Delta III, and Titan IVB. Satellite program support included Wideband Gapfiller, Space Based Laser, the Ultrahigh-Frequency Follow-On program, and the Global Broadcast Service. Throughout the second half of the 90s, the corporation conducted independent assessments for the International Space Station, provided technical support for the Cassini spacecraft, and supported the acquisition of the Space-Based Infrared System (SBIRS) satellite constellation.

Most recently, The Aerospace Corporation provided further technical assistance to EELV programs including the Atlas V and Delta IV, and supported planning for Space Radar to provide global persistent intelligence, surveillance, and reconnaissance to the Department of Defense. Aerospace has been involved in the analysis of concept designs for the Space Tracking and Surveillance System (SSTS). Aerospace plays an integral role in the development of the Advanced Extremely High Frequency (AEHF) program that will replace the Milstar system. Another system that Aerospace was supporting is the Transformational Satellite Communications System MILSATCOM architecture to link military and reconnaissance communication networks. However, it was canceled per the recommendations of Defense Secretary Robert M. Gates due to DoD budgetary constraints. [10] Aerospace remains a significant partner in the continuing evolution of the GPS system. Aerospace has been playing a leading role in the planning and acquisition of Geostationary Operational Environmental Satellite for the National Oceanic and Atmospheric Administration. In 2005, Aerospace supported the Air Force Affordable Responsive Spacelift (ARES) launch system demonstration program. [5]

Capabilities

The Aerospace Corporation, as the FFRDC for national security space, primarily supports the Space and Missile Systems Center of the Air Force Space Command, as well as the National Reconnaissance Office. Their 50-year history working side by side with these organizations has made Aerospace the national memory and data repository for launch and satellite systems. They provide scientific and engineering support for launch, space, and related ground systems that serve the national interest.

The Department of Defense has identified five core competencies for the Aerospace FFRDC: launch certification, system-of-systems engineering, systems development and acquisition, process implementation, and technology application. [11]

Aerospace also manages support to programs for NASA and the National Oceanic and Atmospheric Administration (NOAA), as well as other civil and some commercial space customers.

The Aerospace Corporation sponsors several annual conferences and workshops including planetary defense, space systems engineering, space power, and spacecraft thermal control.

Organization

Engineering and Technology Group

The Engineering and Technology Group is Aerospace's core science and engineering organization, providing cross-program technical support to a variety of military, civil, commercial, and corporate projects. Consisting of nearly half of the company's technical force, the group is made up of six specialty organizations: Laboratory Operations, Communications and Networking Division, Computers and Software Division, Electronics and Sensors Division, Systems Engineering Division, Vehicle Systems Division. [12] Members of ETG assess and evaluate existing and new space technologies, investigate and resolve anomalies, and conduct research and development.

National Systems Group

The National Systems Group is responsible for systems engineering and integrations support for NRO space programs. Through methods such as technical and engineering analyses, concept design studies, and direct on-site support, they provide planning, development, and deployment services for reconnaissance space systems. [13] NSG's focus is to apply a systems engineering approach to national intelligence programs to provide objective technical recommendations and solutions.

Defense Systems Group

The Defense Systems Group provides customer support to all national-security space programs. Activities within the group include requirements analysis, cross-mission planning and architecture development, strategic awareness planning, cross-program engineering, and systems acquisition development. [13]

The Defense Systems Group works with the Space Force and industry partners to develop military satellites and advanced national-security satellite systems. It oversees four major spacecraft and space system areas: communications, surveillance, weather, and navigation. [13] Much emphasis is placed upon the life cycle for systems—as space programs are designed, acquired, and fielded. The Space Systems Group also includes Space Launch Operations which supports Air Force and NRO launch programs by monitoring and collecting data from national security launches. It is responsible for conducting the Aerospace independent launch readiness verification process for legacy and EELV launches. This group focuses on lessons learned, data, and best practices sharing among launch programs. [2]

Civil Systems Group

The Civil Systems Group is a division of The Aerospace Corporation that supports both developing and operational civil space systems for NASA, the National Oceanic and Atmospheric Administration (NOAA), as well as addressing difficult systems engineering problems in the military, civil, and commercial applications. Commercially, the group supports satellite owner-operators, spacecraft manufacturers, insurance companies, and space-consulting and legal firms. [2] It plays a key role in spacecraft operations, acquisition planning, strategic planning, acquisition management, and risk assessment for operational, near-term and future NOAA satellite programs. [13]

Specialty Centers

Center for Orbital and Reentry Debris Studies

The company also maintains the Center for Orbital and Reentry Debris Studies (CORDS). The group is unique in that it is the only one that systematically tests fallen space debris in its laboratory, The size and shape of debris along with melting that occurs during reentry is analyzed with sophisticated computer software in an effort to reconstruct its fall. Information learned during analysis is used to help satellite developers "design for demise" or ensure that debris burns up more completely during reentry. [14] [15] The team received the 1992 NASA Group Achievement Award for their work on understanding the breakup characteristics of the Space Shuttle external tank. [16]

Center for Space Policy and Strategy

The Center for Space Policy and Strategy was originally established in 2000 as a Center of Excellence for civil, commercial, and national space policy. In 2016, the Center was expanded.

Corporate governance

Chief executive officers

Board of trustees

See also

Related Research Articles

<span class="mw-page-title-main">National Reconnaissance Office</span> US intelligence agency in charge of satellite intelligence

The National Reconnaissance Office (NRO) is a member of the United States Intelligence Community and an agency of the United States Department of Defense which designs, builds, launches, and operates the reconnaissance satellites of the U.S. federal government. It provides satellite intelligence to several government agencies, particularly signals intelligence (SIGINT) to the National Security Agency (NSA), imagery intelligence (IMINT) to the National Geospatial-Intelligence Agency (NGA), and measurement and signature intelligence (MASINT) to the Defense Intelligence Agency (DIA). The NRO announced in 2023 that it plans within the following decade to quadruple the number of satellites it operates and increase the number of signals and images it delivers by a factor of ten.

<span class="mw-page-title-main">Manned Orbiting Laboratory</span> Canceled U.S. Air Force human spaceflight program

The Manned Orbiting Laboratory (MOL) was part of the United States Air Force (USAF) human spaceflight program in the 1960s. The project was developed from early USAF concepts of crewed space stations as reconnaissance satellites, and was a successor to the canceled Boeing X-20 Dyna-Soar military reconnaissance space plane. Plans for the MOL evolved into a single-use laboratory, for which crews would be launched on 30-day missions, and return to Earth using a Gemini B spacecraft derived from NASA's Gemini spacecraft and launched with the laboratory.

Orbital Sciences Corporation was an American company specializing in the design, manufacture, and launch of small- and medium- class space and launch vehicle systems for commercial, military and other government customers. In 2014, Orbital merged with Alliant Techsystems (ATK) to create a new company called Orbital ATK, which in turn was purchased by Northrop Grumman in 2018.

<span class="mw-page-title-main">Space-Based Infrared System</span> Missile warning and defence system

The Space-Based Infrared System (SBIRS) is a United States Space Force system intended to meet the United States' Department of Defense infrared space surveillance needs through the first two to three decades of the 21st century. The SBIRS program is designed to provide key capabilities in the areas of missile warning, missile defense, battlespace characterization and technical intelligence via satellites in geosynchronous Earth orbit (GEO), sensors hosted on satellites in highly elliptical orbit (HEO), and ground-based data processing and control.

Ivan Alexander Getting was an American physicist and electrical engineer, credited with the development of the Global Positioning System (GPS). He was the co-leader of the research group which developed the SCR-584, an automatic microwave tracking fire-control system, which enabled M9 Gun Director directed anti-aircraft guns to destroy a significant percentage of the German V-1 flying bombs launched against London late in the Second World War.

<span class="mw-page-title-main">United States Space Surveillance Network</span> SSA system

The United States Space Surveillance Network (SSN) detects, tracks, catalogs and identifies artificial objects orbiting Earth, e.g. active/inactive satellites, spent rocket bodies, or fragmentation debris. The system is the responsibility of United States Space Command and operated by the United States Space Force and its functions are:

<span class="mw-page-title-main">Los Angeles Air Force Base</span> US Air Force base in El Segundo, California, United States

Los Angeles Air Force Base (LAAFB) is a United States Space Force base located in El Segundo, California. Los Angeles Air Force Base houses and supports the headquarters of the Space Systems Command field command of the United States Space Force, which was established on August 13, 2021. The center manages research, development and acquisition of military space systems.

<span class="mw-page-title-main">Eberhardt Rechtin</span> American aerospace engineer

Eberhardt Rechtin was an American systems engineer and respected authority in aerospace systems and systems architecture.

<span class="mw-page-title-main">Space Systems Command</span> U.S. Space Force space development, acquisition, launch, and logistics field command

Space Systems Command (SSC) is the United States Space Force's space development, acquisition, launch, and logistics field command. It is headquartered at Los Angeles Air Force Base, California, and manages the United States' space launch ranges.

<span class="mw-page-title-main">Space Launch Delta 45</span> United States Space Force Launch unit

The Space Launch Delta 45 is a unit of the United States Space Force. The Space Launch Delta 45 is assigned to Space Systems Command and headquartered at Patrick Space Force Base, Florida. The wing also controls Cape Canaveral Space Force Station. The 45th Space Delta is responsible for all space launch operations from the East Coast. It manages the Eastern Range, including launch activities for the Space Force, Department of Defense (DoD), NASA, and other private space corporations.

<span class="mw-page-title-main">1st Space Operations Squadron</span> U.S. Space Force unit

The 1st Space Operations Squadron is a United States Space Force unit responsible for space-based space domain awareness. Located at Schriever Space Force Base, Colorado, the squadron operates the Space Based Space Surveillance system, the Advanced Technology Risk Reduction system, the Operationally Responsive Space-5 satellite, and the Geosynchronous Space Situational Awareness Program.

<span class="mw-page-title-main">Military Satellite Communications Directorate</span> Military unit

The Military Satellite Communications Directorate is a United States Space Force organization headquartered at Los Angeles Air Force Base, California. It is one of several wings and other units that make up the Space and Missile Systems Center (SMC).

The Space Based Space Surveillance (SBSS) system is a planned United States Space Force constellation of satellites and supporting ground infrastructure that will improve the ability of the United States Department of Defense (DoD) to detect and track space objects in orbit around the Earth.

<span class="mw-page-title-main">12th Space Warning Squadron</span> Military unit

The 12th Space Warning Squadron is a United States Space Force ground-based radar used for missile warning, missile defense, and space situation awareness, stationed at Pituffik Space Base, Greenland.

<span class="mw-page-title-main">Alexander H. Flax</span> American aeronautical engineer and government official

Alexander Henry Flax was the Chief Scientist of the U.S. Air Force (USAF) from 1959 to 1961, Assistant Secretary of the Air Force for Research and Development from 1963 to 1969, and the third Director of the National Reconnaissance Office (NRO) from 1965 to 1969. He was the director at a time when the second generation of imaging systems became operational and began to play a major role in United States intelligence during the Cold War. He oversaw major growth in NRO funding and personnel, the development of signals intelligence collectors from space, and the development of electro-optical imaging for US reconnaissance satellites.

<span class="mw-page-title-main">Operation Burnt Frost</span> 2008 military operation to destroy a non-functioning U.S. satellite

Operation Burnt Frost was a military operation to intercept and destroy non-functioning U.S. National Reconnaissance Office (NRO) satellite USA-193. The mission was described by the Missile Defense Agency as a "mission of safeguarding human life against the uncontrolled re-entry of a 5,000-pound satellite containing over 1,000 pounds of hazardous hydrazine propellant". The launch occurred on 21 February 2008 at approximately 10:26 p.m. EST from the cruiser USS Lake Erie, using a heavily modified Standard Missile-3 (SM-3) to shoot down the satellite. A few minutes after launch, the SM-3 intercepted its target and successfully completed its mission. The operation received scrutiny from other countries, mainly China and Russia.

<span class="mw-page-title-main">Space force</span> Military branch for space warfare

A space force is a military branch of a nation's armed forces that conducts military operations in outer space and space warfare. The world's first space force was the Russian Space Forces, established in 1992 as an independent military service. However, it lost its independence twice, first being absorbed into the Strategic Rocket Forces from 1997–2001 and 2001–2011, then it merged with the Russian Air Force to form the Russian Aerospace Forces in 2015, where it now exists as a sub-branch. As of 2024, there are two independent space forces: the United States Space Force and China's People's Liberation Army Aerospace Force.

<span class="mw-page-title-main">United States Space Force</span> Space service branch of the U.S. military

The United States Space Force (USSF) is the United States Armed Forces' space service and one of the eight uniformed services of the United States. It is one of two independent space forces in the world.

<span class="mw-page-title-main">USA-282</span> United States military satellite

USA-282, also known as SBIRS GEO-4, is a United States military satellite and part of the Space-Based Infrared System.

<span class="mw-page-title-main">History of the United States Space Force</span>

While the United States Space Force gained its independence on 20 December 2019, the history of the United States Space Force can be traced back to the beginnings of the military space program following the conclusion of the Second World War in 1945. Early military space development was begun within the United States Army Air Forces by General Henry H. Arnold, who identified space as a crucial military arena decades before the first spaceflight. Gaining its independence from the Army on 18 September 1947, the United States Air Force began development of military space and ballistic missile programs, while also competing with the United States Army and United States Navy for the space mission.

References

  1. "Articles of Incorporation". The Aerospace Corporation. 1960.{{cite journal}}: Cite journal requires |journal= (help)
  2. 1 2 3 "Program Offices | The Aerospace Corporation". Aerospace Corporation. Retrieved 2021-08-15.
  3. "Aerospace Strengthens Commercial Collaboration at TechCrunch Disrupt 2024 | The Aerospace Corporation". aerospace.org. 2024-09-17. Retrieved 2024-12-09.
  4. "The Aerospace Corporation, Its Work 1960-1980", pages 12-17. Library of Congress Catalogue Card No. 80-67774
  5. 1 2 "Aerospace History Timeline" . Retrieved 2007-08-17.
  6. Davis Dyer, TRW: Pioneering Technology and Innovation Since 1900 (Harvard Business School Press, 1998), p231
  7. AIR FORCE BALLISTIC MISSILE MANAGEMENT (Formation of Aerospace Corporation) H. Rept. 87-324, 1 May 1961, page 15.
  8. "Making Space Work Since 1960" . Retrieved 2007-08-17.
  9. "Naval Research Laboratory" . Retrieved 2007-09-12.
  10. "Speech".
  11. "What is an FFRDC?" . Retrieved 2007-08-17.
  12. "Engineering and Technology Group" . Retrieved 2007-08-17.
  13. 1 2 3 4 "Organizations" . Retrieved 2007-08-17.
  14. Brown, Eryn (January 22, 2012). "Studying the science of space junk". Los Angeles Times. Retrieved 23 January 2012.
  15. Space Debris
  16. CAIB Archived 2011-10-18 at the Wayback Machine
  17. "Crosslink Spring 2008". The Aerospace Corporation. 2008-07-28. Retrieved 2010-03-15.
  18. "News". The Aerospace Corporation. Retrieved 2010-03-15.
  19. Vartabedian, Ralph (1987-10-06). "Tennant Named President of Air Force Think Tank". Los Angeles Times. Retrieved 2023-11-22.
  20. "The Aerospace Corporation Board of Trustees". The Aerospace Corporation. Retrieved 2016-10-20.