Pathfinder Technology Demonstrator

Last updated

Pathfinder Technology Demonstrator
Mission type Technology demonstration
Operator NASA
Mission duration90 days (planned)
Spacecraft properties
SpacecraftPTD-1 → PTD-5
Spacecraft type6U CubeSat
Bus Tyvak
Manufacturer Ames Research Center and
Glenn Research Center
Launch mass11 kg (24 lb) [1]
Dimensions30 × 20 × 10 cm
Power65 watts
Start of mission
Launch date16 December 2020 (planned) [2]
Rocket Falcon 9
Launch site CCAFS,
Contractor SpaceX
Orbital parameters
Reference system Geocentric orbit
Regime Low Earth orbit
Altitude Sun-synchronous orbit
 

NASA's Pathfinder Technology Demonstrator (PTD) Project will test the operation of a variety of novel technologies on a type of nanosatellites known as CubeSats, providing significant enhancements to the performance of these versatile spacecraft. Each of the five planned PTD missions consist of a 6-unit (6U) CubeSat with expandable solar arrays.

Contents

Flight qualification and demonstration of these technologies are expected to benefit future government and commercial missions. These include propulsion systems and sub-systems that stabilize and point the spacecraft to high accuracy in order to use a laser communications system capable of high-speed broadband.

The first mission, PTD-1, was scheduled for launch in December 2020 on a Falcon 9 rocket, from Cape Canaveral, as part of the ride-share ELaNa mission 35. [3] , and launched in Jan 2021.

PTD-3 launched on May 25 2022 on the SpaceX Transporter-5 rideshare.

Overview

The Pathfinder Technology Demonstrator (PTD) Project is led by NASA's Ames Research Center in California, in collaboration with NASA's Glenn Research Center in Ohio. The PTD project is managed and funded by NASA's Small Spacecraft Technology Program (SSTP) within the Space Technology Mission Directorate. The overall goal is to test the physics of key new technologies in order to enhance small spacecraft and make them able to reach new destinations and operate in new environments. [4] [5] These technologies will be tested in low Earth orbit for potential future application in small spacecraft operating in Earth orbit or in deep space. [5] Technologies demonstrated by PTD flights may be applicable and scalable to larger spacecraft. [5]

The project plans to fly five 6U CubeSat orbital missions, coded PTD-1 through PTD-5, at 6-month intervals, each flight assessing different technologies. [6] Each mission will have a 90-day lifetime after it is released in low Earth orbit. [4] Each spacecraft will include different test payloads such as propulsion systems for orbital station-keeping, maneuvering and interplanetary transit, laser high bandwidth communications, or high precision attitude control (orientation) systems to stabilize the spacecraft and point the designated instruments with high accuracy. [4] [5]

Technology under assessment

Examples of novel systems to be tested are an electrospray thruster, water-based propulsion, and a very precise attitude control system. [4]

PTD-1

A Request for Proposal (RFP) NNA16574335R was issued, on 12 February 2016, for the delivery of a spaceflight qualified 6U CubeSat spacecraft to be operated by NASA for its Pathfinder Technology Demonstrator (PTD) Project to accommodate technology subsystems, hereafter referred to as the payload. One flight demonstration is planned for a low thrust propulsion system with options for four follow-on technology demonstrations. Follow‐on missions may include payloads such as higher thrust propulsion systems or payloads such as optical communications or high precision attitude determination and control systems. Request for proposal response date: 4 April 2016. [4]

The PTD-1 spacecraft is currently under development and fabrication. It will demonstrate a propulsion system with a water-based propellant obtained from electrolysis of water. While in orbit, the system separates onboard water into hydrogen and oxygen propellants by applying an electric current through the water. PTD-1 is scheduled for launch in December 2020 as part of the ride-share ELaNa mission 35 on board a Falcon 9 rocket. [3] [ needs update ]

PTD-1 launched 24 Jan 2021 on SpaceX rideshare Transporter-1 mission.

HYDROS Propulsion test

Diagram showing the overall chemical equation. Electrolysis of Water.png
Diagram showing the overall chemical equation.

HYDROS is a hybrid chemical/electrical technology to provide propulsion using water. It uses an electrolysis cell to split water propellant into gaseous hydrogen and oxygen that are stored under pressure in separate tanks. The system then burns the hydrogen and oxygen mix in a simple thruster nozzle to provide up to 1 Newton and a specific impulse of 258 seconds. This propulsion system is being developed by Tethers Unlimited, Inc.

In pure water, at the negatively charged cathode, a reduction reaction takes place, with electrons (e) from the cathode being given to hydrogen cations to form hydrogen gas. The half reaction, balanced with acid, is:

Reduction at cathode: 2 H+ ( Aqueous solution ) + 2e → H2 ( gas )

At the positively charged anode, an oxidation reaction occurs, generating oxygen gas and giving electrons to the anode to complete the circuit:

Oxidation at anode: 2 H2O ( liquid ) → O2 (gas) + 4 H+ (aqueous solution) + 4e
Overall reaction: 2 H2O (liquid) → 2 H2 (gas) + O2 (gas)

The propulsion system uses the electricity generated by the solar arrays to power the miniature water electrolysis. The demonstration will test propulsion performance through programmed changes in spacecraft velocity and altitude.


PTD-2

PTD-2 is a 6U CubeSat technology demonstration mission to demonstrate an improved attitude determination and control system that was developed under the Tipping Point Program. The HyperXACT design will provide 5X improvement in reliability and pointing over the many state of the art systems whilst maintaining the 1/2 U form factor. [10]

PTD-3

PTD-3, a 6U cubesat, launched on May 25 2022 on SpaceX's Transporter-5 rideshare mission, includes the 3U TeraByte InfraRed Delivery (TBIRD) laser communications test. [11] [12] TBIRD will send data at 200 Gbps from LEO to ground stations. [13] By Dec 2022, TBIRD demonstrated 100 Gbps data transfers from a 300 mile orbit to Earth, and plans to test 200-1,000 Gbps. [14] On April 28, 2023, 200 gigabit per second (Gbps) throughput was achieved. [15]

PTD-4

A 6U cubesat to demonstrate a very high-power, low-volume deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, being developed by NASA’s Marshall Spaceflight Center in Huntsville, Alabama. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Ion thruster</span> Spacecraft engine that generates thrust by generating a jet of ions

An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity.

<span class="mw-page-title-main">CubeSat</span> Miniature satellite in 10cm cube modules

A CubeSat is a class of miniaturized satellite with a form factor of 10 cm (3.9 in) cubes. CubeSats have a mass of no more than 2 kg (4.4 lb) per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats are put into orbit by deployers on the International Space Station, or launched as secondary payloads on a launch vehicle. As of August 2021, more than 1,600 CubeSats have been launched.

<span class="mw-page-title-main">Busek</span> American spacecraft propulsion company

Busek Co. Inc. is an American spacecraft propulsion company that builds thrusters, electronics, and various systems for spacecraft.

<span class="mw-page-title-main">Green Propellant Infusion Mission</span> NASA satellite testing a new rocket fuel

The Green Propellant Infusion Mission (GPIM) was a NASA technology demonstrator project that tested a less toxic and higher performance/efficiency chemical propellant for next-generation launch vehicles and CubeSat spacecraft. When compared to the present high-thrust and high-performance industry standard for orbital maneuvering systems, which for decades, have exclusively been reliant upon toxic hydrazine based propellant formulations, the "greener" hydroxylammonium nitrate (HAN) monopropellant offers many advantages for future satellites, including longer mission durations, additional maneuverability, increased payload space and simplified launch processing. The GPIM was managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, and was part of NASA's Technology Demonstration Mission Program within the Space Technology Mission Directorate.

<span class="mw-page-title-main">LISA Pathfinder</span> 2015 European Space Agency spacecraft

LISA Pathfinder, formerly Small Missions for Advanced Research in Technology-2 (SMART-2), was an ESA spacecraft that was launched on 3 December 2015 on board Vega flight VV06. The mission tested technologies needed for the Laser Interferometer Space Antenna (LISA), an ESA gravitational wave observatory planned to be launched in 2037. The scientific phase started on 8 March 2016 and lasted almost sixteen months. In April 2016 ESA announced that LISA Pathfinder demonstrated that the LISA mission is feasible.

<span class="mw-page-title-main">Mars Cube One</span> 2018 Mars flyby mission

Mars Cube One was a Mars flyby mission launched on 5 May 2018 alongside NASA's InSight Mars lander. It consisted of two nanospacecraft, MarCO-A and MarCO-B, that provided real-time communications to Earth for InSight during its entry, descent, and landing (EDL) on 26 November 2018 - when InSight was out of line of sight from the Earth. Both spacecraft were 6U CubeSats designed to test miniaturized communications and navigation technologies. These were the first CubeSats to operate beyond Earth orbit, and aside from telecommunications they also tested CubeSats' endurance in deep space. On 5 February 2019, NASA reported that both the CubeSats had gone silent by 5 January 2019, and are unlikely to be heard from again. In August 2019, the CubeSats were honored for their role in the successful landing of the InSight lander on Mars.

<span class="mw-page-title-main">Near-Earth Asteroid Scout</span> Solar sail spacecraft

The Near-Earth Asteroid Scout was a mission by NASA to develop a controllable low-cost CubeSat solar sail spacecraft capable of encountering near-Earth asteroids (NEA). NEA Scout was one of ten CubeSats launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022.

<span class="mw-page-title-main">Lunar Flashlight</span> Lunar orbiter by NASA

Lunar Flashlight was a low-cost CubeSat lunar orbiter mission to explore, locate, and estimate size and composition of water ice deposits on the Moon for future exploitation by robots or humans.

<span class="mw-page-title-main">BioSentinel</span> US experimental astrobiology research satellite

BioSentinel is a lowcost CubeSat spacecraft on a astrobiology mission that will use budding yeast to detect, measure, and compare the impact of deep space radiation on DNA repair over long time beyond low Earth orbit.

<span class="mw-page-title-main">Lunar IceCube</span> Nanosatellite launched in 2022

Lunar IceCube is a NASA nanosatellite orbiter mission that was intended to prospect, locate, and estimate amount and composition of water ice deposits on the Moon for future exploitation. It was launched as a secondary payload mission on Artemis 1, the first flight of the Space Launch System (SLS), on 16 November 2022. As of February 2023 it's unknown whether NASA team has contact with satellite or not.

<span class="mw-page-title-main">LunIR</span> Spacecraft

LunIR is a nanosatellite spacecraft launched to the Moon collecting surface spectroscopy and thermography. It was launched as a secondary payload on the Artemis 1 mission on 16 November 2022.

<span class="mw-page-title-main">CubeSat for Solar Particles</span> Nanosatellite

CubeSat for Solar Particles (CuSP) was a low-cost 6U CubeSat to orbit the Sun to study the dynamic particles and magnetic fields. The principal investigator for CuSP is Mihir Desai, at the Southwest Research Institute (SwRI) in San Antonio, Texas. It was launched on the maiden flight of the Space Launch System (SLS), as a secondary payload of the Artemis 1 mission on 16 November 2022.

<i>ArgoMoon</i> Nanosatellite

ArgoMoon is a CubeSat that was launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022 at 06:47:44 UTC. The objective of the ArgoMoon spacecraft is to take detailed images of the Interim Cryogenic Propulsion Stage following Orion separation, an operation that will demonstrate the ability of a cubesat to conduct precise proximity maneuvers in deep space. ASI has not confirmed nor denied whether this took place, but several images of the Earth and the Moon were taken.

Iodine Satellite (iSat) is a technology demonstration satellite of the CubeSat format that will undergo high changes in velocity from a primary propulsion system by using a Hall thruster with iodine as the propellant. The spacecraft will also perform changes of its orbital altitude, and demonstrate deorbit capabilities to reduce space junk.

Cislunar Explorers is a pair of spacecraft that will show the viability of water electrolysis propulsion and interplanetary optical navigation to orbit the Moon. Both spacecraft will launch mated together as two L-shaped 3U CubeSats, which fit together as a 6U CubeSat of about 10 cm × 20 cm × 30 cm.

<span class="mw-page-title-main">Earth Escape Explorer</span> US experimental communications satellite

Earth Escape Explorer (CU-E3) is a nanosatellite of the 6U CubeSat format that will demonstrate long-distance communications while in heliocentric orbit.

Team Miles was a 6U CubeSat that was to demonstrate navigation in deep space using innovative plasma thrusters. It was also to test a software-defined radio operating in the S-band for communications from about 4 million kilometers from Earth. Team Miles was one of ten CubeSats launched with the Artemis 1 mission into a heliocentric orbit in cislunar space on the maiden flight of the Space Launch System (SLS), that took place on 16 November 2022. Team Miles was deployed but contact was not established with the spacecraft.

<span class="mw-page-title-main">EQUULEUS</span> Japanese nanosatellite

EQUULEUS is a nanosatellite of the 6U CubeSat format that will measure the distribution of plasma that surrounds the Earth (plasmasphere) to help scientists understand the radiation environment in that region. It will also demonstrate low-thrust trajectory control techniques, such as multiple lunar flybys, within the Earth-Moon region using water steam as propellant. The spacecraft was designed and developed jointly by the Japan Aerospace Exploration Agency (JAXA) and the University of Tokyo.

<span class="mw-page-title-main">OMOTENASHI</span> Small spacecraft and semi-hard lander of the 6U CubeSat format

OMOTENASHI was a small spacecraft and semi-hard lander of the 6U CubeSat format intended to demonstrate low-cost technology to land and explore the lunar surface. The CubeSat was to take measurements of the radiation environment near the Moon as well as on the lunar surface. Omotenashi is a Japanese word for "welcome" or "Hospitality".

<span class="mw-page-title-main">CAPSTONE</span> NASA satellite to test the Lunar Gateway orbit

CAPSTONE is a lunar orbiter that will test and verify the calculated orbital stability planned for the Lunar Gateway space station. The spacecraft is a 12-unit CubeSat that will also test a navigation system that will measure its position relative to NASA's Lunar Reconnaissance Orbiter (LRO) without relying on ground stations. It was launched on 28 June 2022, arrived in lunar orbit on 14 November 2022, and was scheduled to orbit for six months. On 18 May 2023, it completed its primary mission to orbit in the near-rectilinear halo orbit for six months, but will stay on this orbit, continuing to perform experiments during an enhanced mission phase.

References

  1. "Pathfinder Technology Demonstrator: Demonstrating Novel CubeSat Technologies in Low Earth Orbit" (PDF). nasa.gov. NASA. 23 April 2018. Retrieved 10 October 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  2. "Launch Schedule". Spaceflight Now. 8 October 2020. Retrieved 10 October 2020.
  3. 1 2 "Upcoming ElaNa CubeSat Launches". NASA. 10 August 2020. Retrieved 10 October 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. 1 2 3 4 5 6 "Pathfinder Technology Demonstrator, Small Satellite Conference 2016". NASA. 20–22 April 2016. Retrieved 10 October 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. 1 2 3 4 5 NASA's Pathfinder Technology Demonstrator Elwood F. Agasid, Roger C. Hunter, Christopher E. Baker, John Marmie, Darin Foreman. John Hanson, Mirabel Hill, Small Satellite Conference 2017, SSC17-III-02 PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. Propulsion Technology Demonstrator. Demonstrating Novel CubeSat Technologies in low Earth orbit; NASA Technical Reports Server; Marmie, John; Martinez, Andres; Petro, Andrew; 8 August 2015; Document ID: 20150016065 PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. Rovey, J. "Propulsion and Energy: Electric Propulsion (Year in Review, 2009)" (PDF). Aerospace America, December 2009, p. 44. Archived from the original (PDF) on 8 December 2015. Retrieved 10 October 2020.
  8. Mohon, Lee (2013). "Technology Demonstration Missions: Green Propellant Infusion Mission (GPIM)". NASA. Retrieved 27 February 2014.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. Pathfinder Technology Demonstrator: GlobalStar Testing and Results. (PDF) Vanessa Kuroda Communications Subsystem Lead, 20-22 April 2016, CalPoly CubeSat Workshop
  10. PTD-2
  11. CubeSat set to demonstrate NASA's fastest laser link from space SpaceDaily, May 2022
  12. CubeSat Set to Demonstrate NASA’s Fastest Laser Link from Space NASA, May 2022
  13. Small Satellite Makes Big Impact on Optical Infusion NASA, Feb 2022
  14. Communications system achieves fastest laser link from space yet
  15. Tavares, Frank (11 May 2023). "NASA, Partners Achieve Fastest Space-to-Ground Laser Comms Link". NASA. Retrieved 26 August 2023.
  16. PTD-4 (LISA-T)