EQUULEUS

Last updated

EQUULEUS
EQUULEUS Cubesat.jpg
Depiction of the satellite in opened position
Mission type Technology, science
Operator JAXA
University of Tokyo
COSPAR ID 2022-156E
SATCAT no. 55905
Website https://www.space.t.u-tokyo.ac.jp/equuleus/
Mission durationCruise: 6 months (planned) [1]
Science: 6 months (planned)
Elapsed: 1 year, 2 months and 16 days
Spacecraft properties
SpacecraftEQUULEUS
Spacecraft type CubeSat
Bus 6U CubeSat
Manufacturer JAXA / University of Tokyo
Launch mass14 kg (31 lb)
Dimensions10 cm × 20 cm × 30 cm (3.9 in × 7.9 in × 11.8 in)
Power15 watts
Start of mission
Launch date16 November 2022, 06:47:44 UTC [2]
Rocket SLS Block 1
Launch site Kennedy, LC-39B
Contractor NASA
Orbital parameters
Reference system Selenocentric orbit
Transponders
Band X-band and Ka-band [1]
TWTA power13 W [1]
Flyby of Moon
Closest approach21 November 2022, 16:25 UTC
Distance5,000 km (3,100 mi)
Instruments
Plasmaspheric Helium ion Observation by Enhanced New Imager in eXtreme ultraviolet (PHOENIX)
DEtection camera for Lunar impact PHenomena IN 6U Spacecraft (DELPHIUS))
Cis-Lunar Object Detector within Thermal Insulation (CLOTH)
 

EQUULEUS (EQUilibriUm Lunar-Earth point 6U Spacecraft) is a nanosatellite of the 6U CubeSat format that will measure the distribution of plasma that surrounds the Earth (plasmasphere) to help scientists understand the radiation environment in that region. It will also demonstrate low-thrust trajectory control techniques, such as multiple lunar flybys, within the Earth-Moon region using water steam as propellant. [3] [1] The spacecraft was designed and developed jointly by the Japan Aerospace Exploration Agency (JAXA) and the University of Tokyo. [3] [4]

Contents

EQUULEUS was one of ten CubeSats launched with the Artemis 1 mission into a heliocentric orbit in cislunar space on the maiden flight of the Space Launch System that took place on 16 November 2022. [2] [5] On 17 November 2022, Japan Aerospace Exploration Agency (JAXA) reported that EQUULEUS separated successfully on 16 November 2022 and was confirmed to be operating normally on 16 November 2022 at 13:50 UTC. [6] EQUULEUS filmed the Green Comet C/2022 E3 (ZTF) in February 2023. [7]

Animation of EQUULEUS around Earth

.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Earth *
Moon *
EQUULEUS Animation of EQUULEUS around Earth.gif
Animation of EQUULEUS around Earth
   Earth ·   Moon ·   EQUULEUS

Overview

Mapping the plasmasphere around Earth may provide important insight for protecting both humans and electronics from radiation damage during long space journeys. It will also demonstrate low-thrust trajectory control techniques, such as multiple lunar flybys, within the Earth-Moon Lagrange points (EML). [1] [8] [9] The mission will demonstrate that departing from EML can transfer to various orbits, such as Earth orbits, Moon orbits, and interplanetary orbits, with a tiny amount of orbital control. [8] EQUULEUS features 2 deployable solar panels, and lithium batteries.

The mission will be monitored from the Japanese deep space antenna (64-meter antenna and 34-meter antenna) with support from the DSN (Deep Space Network) of Jet Propulsion Laboratory (JPL). [1] The principal investigator is Professor Hashimoto at the Japan Aerospace Exploration Agency (JAXA). [8] The mission is named after the 'little horse' constellation Equuleus. [10]

Propulsion

Water thrustersUnit/performance
PropellantWater
Thrust2 - 4 mN
Specific impulse >70 seconds
Stored pressure< 100 kPa
Power12 – 15 watts
Water mass1.2 kg
Total Delta-V 70 m/s

The propulsion system, called AQUARIUS, employs 8 water thrusters also used for attitude control (orientation) and momentum management. [11] The spacecraft carries 1.2 kg of water, [11] [12] and the complete propulsion system occupied about 2.5 units out of the 6 units total spacecraft volume. The waste heat from the communication components is reused to assist the pre-heater in the water vapor production system. The water is heated to 100 °C (212 °F) at the pre-heater. [11] The AQUARIUS' water thrusters produce a total of 4.0 mN, a specific impulse (Isp) of 70 seconds, and consumes about 20 watts power. [11] Before its flight on EQUULEUS, AQUARIUS was first tested on the 2019 AQT-D CubeSat.

Scientific payload

Several of EQUULEUS's instruments are named after the constellations that neighbor Equuleus. Equuleus IAU.svg
Several of EQUULEUS's instruments are named after the constellations that neighbor Equuleus.

PHOENIX

EQUULEUS' scientific payload features a small UV imager named PHOENIX (Plasmaspheric Helium ion Observation by Enhanced New Imager in eXtreme ultraviolet) that will operate in the high-energy extreme ultraviolet wavelengths. It consists of an entrance mirror of 60 mm diameter, and a photon counting device. The reflectivity of the mirror is optimized for the emission line of helium ion (30.4 nm wavelength), which is the relevant component of the plasmasphere of Earth. [13] The plasmasphere is where various phenomena are caused by the electromagnetic disturbances by the solar wind. By flying far from the Earth, the PHOENIX telescope will provide a global image of the plasmasphere of Earth and contribute to its spatial and temporal evolution. [13]

DELPHINUS

DELPHINUS (DEtection camera for Lunar impact PHenomena IN 6U Spacecraft), or DLP for short, is a camera connected to the PHOENIX telescope to observe lunar impact flashes and near-Earth asteroids (NEO), as well as potential 'mini-moons' while positioned at the Earth-Moon Lagrangian point L2 (L2) halo orbit. [14] Theoretically, NEOs approaching Earth can be briefly caught within gravity of Earth well, and although in terms of orbital mechanics the object's movements is still centered around the Sun, to an observer on Earth it will move as if it is a moon of the planet. [14] One example of such an object is 2006 RH120, which orbited Earth between 2006 and 2007. If a mini-moon or NEO that can be rendezvoused by EQUULEUS is identified, the CubeSat will attempt a flyby. [14] This payload occupies about 0.5 units out of the total 6 units volume. [1] The results will contribute to the risk evaluation for future infrastructure or human activity on the lunar surface. [1]

CLOTH

The instrument named CLOTH (Cis-Lunar Object detector within THermal insulation) will detect and evaluate the meteoroid impact flux in the cislunar space by using dust detectors mounted on the exterior of the spacecraft. The goal of this instrument is to determine the size and spatial distribution of dust solid objects in the cislunar space. [1] CLOTH utilizes the spacecraft's multi-layer insulation (MLI) as a detector, thus realizing a dust counter suitable for mass-constrained CubeSats. [15] It will be the first instrument to measure the dust environment of the Earth–Moon L2 Lagrange point, and aims to uncover the dust's origin, as well as conducting risk assessment of the L2 point dust particles in anticipation of a future crewed mission. [15] CLOTH will decipher L2 point dust (likely originating from mini-moons) from sporadic dust by differences in their impact velocity. [15]

See also

The 10 CubeSats flying in the Artemis 1 mission
The 3 CubeSat missions removed from Artemis 1
CubeSat and microsatellite projects of ISSL

Related Research Articles

<span class="mw-page-title-main">CubeSat</span> Miniature satellite in 10 cm cube modules

A CubeSat is a class of miniaturized satellite with a form factor of 10 cm (3.9 in) cubes. CubeSats have a mass of no more than 2 kg (4.4 lb) per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats are put into orbit by deployers on the International Space Station, or launched as secondary payloads on a launch vehicle. As of December 2023, more than 2,300 CubeSats have been launched.

The (Japanese) Lunar Exploration Program is a program of robotic and human missions to the Moon undertaken by the Japanese Aerospace Exploration Agency (JAXA) and its division, the Institute of Space and Astronautical Science (ISAS). It is also one of the three major enterprises of the JAXA Space Exploration Center (JSPEC). The main goal of the program is "to elucidate the origin and evolution of the Moon and utilize the Moon in the future".

<span class="mw-page-title-main">Near-Earth Asteroid Scout</span> Solar sail spacecraft

The Near-Earth Asteroid Scout was a mission by NASA to develop a controllable low-cost CubeSat solar sail spacecraft capable of encountering near-Earth asteroids (NEA). NEA Scout was one of ten CubeSats launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022.

<span class="mw-page-title-main">Lunar Flashlight</span> Lunar orbiter by NASA

Lunar Flashlight was a low-cost CubeSat lunar orbiter mission to explore, locate, and estimate size and composition of water ice deposits on the Moon for future exploitation by robots or humans.

<span class="mw-page-title-main">BioSentinel</span> US experimental astrobiology research satellite

BioSentinel is a lowcost CubeSat spacecraft on a astrobiology mission that will use budding yeast to detect, measure, and compare the impact of deep space radiation on DNA repair over long time beyond low Earth orbit.

<span class="mw-page-title-main">Lunar IceCube</span> Nanosatellite launched in 2022

Lunar IceCube is a NASA nanosatellite orbiter mission that was intended to prospect, locate, and estimate amount and composition of water ice deposits on the Moon for future exploitation. It was launched as a secondary payload mission on Artemis 1, the first flight of the Space Launch System (SLS), on 16 November 2022. As of February 2023 it's unknown whether NASA team has contact with satellite or not.

<span class="mw-page-title-main">LunIR</span> Spacecraft

LunIR is a nanosatellite spacecraft launched to the Moon collecting surface spectroscopy and thermography. It was launched as a secondary payload on the Artemis 1 mission on 16 November 2022.

<span class="mw-page-title-main">CubeSat for Solar Particles</span> Nanosatellite

CubeSat for Solar Particles (CuSP) was a low-cost 6U CubeSat to orbit the Sun to study the dynamic particles and magnetic fields. The principal investigator for CuSP is Mihir Desai, at the Southwest Research Institute (SwRI) in San Antonio, Texas. It was launched on the maiden flight of the Space Launch System (SLS), as a secondary payload of the Artemis 1 mission on 16 November 2022.

<span class="mw-page-title-main">Lunar Polar Hydrogen Mapper</span> US Moon-orbiting ice-finding satellite

Lunar Polar Hydrogen Mapper, or LunaH-Map, was one of the 10 CubeSats launched with Artemis 1 on 16 November 2022. Along with Lunar IceCube and LunIR, LunaH-Map will help investigate the possible presence of water-ice on the Moon. Arizona State University began development of LunaH-Map after being awarded a contract by NASA in early 2015. The development team consists of about 20 professionals and students led by Craig Hardgrove, the principal investigator. The mission is a part of NASA's SIMPLEx program.

<i>ArgoMoon</i> Nanosatellite

ArgoMoon is a CubeSat that was launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022 at 06:47:44 UTC. The objective of the ArgoMoon spacecraft is to take detailed images of the Interim Cryogenic Propulsion Stage following Orion separation, an operation that will demonstrate the ability of a cubesat to conduct precise proximity maneuvers in deep space. ASI has not confirmed nor denied whether this took place, but several images of the Earth and the Moon were taken.

Cislunar Explorers is a pair of spacecraft that will show the viability of water electrolysis propulsion and interplanetary optical navigation to orbit the Moon. Both spacecraft will launch mated together as two L-shaped 3U CubeSats, which fit together as a 6U CubeSat of about 10 cm × 20 cm × 30 cm.

<span class="mw-page-title-main">Earth Escape Explorer</span> US experimental communications satellite

Earth Escape Explorer (CU-E3) is a nanosatellite of the 6U CubeSat format that will demonstrate long-distance communications while in heliocentric orbit.

Team Miles was a 6U CubeSat that was to demonstrate navigation in deep space using innovative plasma thrusters. It was also to test a software-defined radio operating in the S-band for communications from about 4 million kilometers from Earth. Team Miles was one of ten CubeSats launched with the Artemis 1 mission into a heliocentric orbit in cislunar space on the maiden flight of the Space Launch System (SLS), that took place on 16 November 2022. Team Miles was deployed but contact was not established with the spacecraft.

<span class="mw-page-title-main">OMOTENASHI</span> Small spacecraft and semi-hard lander of the 6U CubeSat format

OMOTENASHI was a small spacecraft and semi-hard lander of the 6U CubeSat format intended to demonstrate low-cost technology to land and explore the lunar surface. The CubeSat was to take measurements of the radiation environment near the Moon as well as on the lunar surface. Omotenashi is a Japanese word for "welcome" or "Hospitality".

<span class="mw-page-title-main">Near-rectilinear halo orbit</span> Periodic, three-dimensional circuit associated with a Lagrange point in the three-body problem

In orbital mechanics a near-rectilinear halo orbit (NRHO) is a halo orbit that passes close to the smaller planetary body and has nearly stable behavior. The CAPSTONE mission, launched in 2022, is the first spacecraft to use such orbit in cislunar space, and this Moon-centric orbit is planned as a staging area for future lunar missions. In contrast with low lunar orbit which NASA characterizes as being deep in the lunar gravity well, NRHO is described as being "balanced on the edge" of the gravity well.

NASA's Pathfinder Technology Demonstrator (PTD) Project will test the operation of a variety of novel technologies on a type of nanosatellites known as CubeSats, providing significant enhancements to the performance of these versatile spacecraft. Each of the five planned PTD missions consist of a 6-unit (6U) CubeSat with expandable solar arrays.

<span class="mw-page-title-main">CAPSTONE</span> NASA satellite to test the Lunar Gateway orbit

CAPSTONE is a lunar orbiter that will test and verify the calculated orbital stability planned for the Lunar Gateway space station. The spacecraft is a 12-unit CubeSat that will also test a navigation system that will measure its position relative to NASA's Lunar Reconnaissance Orbiter (LRO) without relying on ground stations. It was launched on 28 June 2022, arrived in lunar orbit on 14 November 2022, and was scheduled to orbit for six months. On 18 May 2023, it completed its primary mission to orbit in the near-rectilinear halo orbit for six months, but will stay on this orbit, continuing to perform experiments during an enhanced mission phase.

<span class="mw-page-title-main">Small Innovative Missions for Planetary Exploration</span> NASA program

Small Innovative Missions for Planetary Exploration (SIMPLEx) is a planetary exploration program operated by NASA. The program funds small, low-cost spacecraft for stand-alone planetary exploration missions. These spacecraft are intended to launch as secondary payloads on other missions and are riskier than Discovery or New Frontiers missions.

References

  1. 1 2 3 4 5 6 7 8 9 Ikari, Satoshi; Ozaki, Naoya; Nakajima, Shintaro; Oguri, Kenshiro; Miyoshi, Kota; Campagnola, Stefano; Koizumi, Hiroyuki; Kobayashi, Yuta; Funase, Ryu (2017). "EQUULEUS: Mission to Earth - Moon Lagrange Point by a 6U Deep Space CubeSat". Small Satellite Conference. Utah State University, Small Satellite Conference. Retrieved 12 March 2021.
  2. 1 2 Roulette, Joey; Gorman, Steve (16 November 2022). "NASA's next-generation Artemis mission heads to moon on debut test flight". Reuters. Retrieved 16 November 2022.
  3. 1 2 "Space Launch System Highlights" (PDF). NASA. May 2016. Retrieved 12 March 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. Gunter Dirk Krebs (18 May 2020). "EQUULEUS". Gunter's Space Page. Retrieved 12 March 2021.
  5. Clark, Stephen (12 October 2021). "Adapter structure with 10 CubeSats installed on top of Artemis moon rocket". Spaceflight Now. Retrieved 22 October 2021.
  6. "JAXA | Status of the JAXA CubeSats OMOTENASHI and EQUULEUS onboard NASA Artemis I". JAXA | Japan Aerospace Exploration Agency. Retrieved 18 November 2022.
  7. Pultarova, Tereza (21 February 2023). "Green comet seen from space by Artemis 1 moon mission cubesat (video)". Space.com. Retrieved 9 August 2023.
  8. 1 2 3 "EQUULEUS - Technology Demonstration". Intelligent Space Systems Laboratory. University of Tokyo. 2017. Retrieved 12 March 2021.[ permanent dead link ]
  9. "International Partners Provide Science Satellites for America's Space Launch System Maiden Flight". NASA. 26 May 2016. Retrieved 12 March 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. Lester Haines (27 May 2016). "NASA firms up Space Launch System nanosat manifest". The Register. Retrieved 12 March 2021.
  11. 1 2 3 4 Asakawa, Jun; Koizumi, Hiroyuki; Nishii, Keita; Takeda, Naoki; Funase, Ryu; Komurasaki, Kimiya (2017). "Development of the Water Resistojet Propulsion System for Deep Space Exploration by the CubeSat: EQUULEUS". Small Satellite Conference. University of Tokyo. Retrieved 12 March 2021.
  12. Hiroyuki Koizumi (2017). "Development of the Water ResistojetPropulsion System for Deep Space Exploration by the CubeSat EQUULEUS". Small Satellite Conference. University of Tokyo. Retrieved 12 March 2021.
  13. 1 2 "Plasmaspheric Helium ion Observation by Enhanced New Imager in eXtreme ultraviolet". EQUULEUS mission home page Intelligent Space Systems Laboratory. University of Tokyo. 2017. Retrieved 12 March 2021.[ permanent dead link ]
  14. 1 2 3 "DELPHINUS". Intelligent Space Systems Laboratory. Archived from the original on 1 December 2017. Retrieved 26 November 2017.
  15. 1 2 3 Ikari, Satoshi; Fujiwara, Masahiro; Kondo, Hirotaka; Matsushita, Shuhei; Yoshikawa, Ichiro; et al. "Solar System Exploration Sciences by EQUULEUS on SLS EM-1 and Science Instruments Development Status". 33rd Annual AIAA/USU Conference on Small Satellites: 4. Retrieved 10 December 2022.