AB Aurigae b

Last updated

AB Aurigae b
Subaru AB Aur b.png
Subaru Telescope detection of AB Aur b.
Discovery
Discovered by Currie et al. [1]
Discovery site Subaru Telescope, Hubble Space Telescope
Discovery dateApril 4, 2022
Direct imaging
Orbital characteristics
44.6–143.2 [1] AU
Eccentricity 0.19–0.60 [1]
Inclination 27.1–58.2 [1]
Physical characteristics
Mean radius
2.75 [2] RJ
Mass 9–12 [1] MJ
Temperature 2,000–2,500  K [1]

    AB Aurigae b (or AB Aur b) [1] is a directly imaged protoplanet embedded within the protoplanetary disk of the young, Herbig AeBe star AB Aurigae. The system is about 508 light-years away: AB Aur b is located at a projected separation of about 93 AU from its host star. AB Aur b is the first confirmed directly imaged exoplanet still embedded in the natal gas and dust from which planets form. It may also provide evidence for the formation of gas giant planets by disk instability.

    Contents

    Discovery

    AB Aur b was discovered by a team led by Thayne Currie, Kellen Lawson, and Glenn Schneider using the Subaru Telescope on Mauna Kea, Hawaii and the Hubble Space Telescope (HST). The Subaru data utilized the observatory's extreme adaptive optics system, SCExAO, to correct for atmospheric blurring and the CHARIS integral field spectrograph to record AB Aur b's brightness measurements at different near-infrared wavelengths. AB Aur b's position coincides with the predicted location of a massive protoplanet required to explained CO gas spirals detected with ALMA and lies interior to the ring of pebble-sized dust seen in ALMA continuum data. [3] The companion was initially detected in 2016: the team initially believed that the signal identified a piece of AB Aurigae's protoplanetary disk, not a newly forming planet. [4] However, subsequent SCExAO/CHARIS data obtained with Subaru over the next four years showed that AB Aur b's spectrum is dissimilar to that of the protoplanetary disk, with a temperature similar to predicted values for a newly born planet. A new detection with HST using the STIS instrument and an archival detection with the now-decommissioned NICMOS instrument from 2007 confirmed evidence from Subaru data that AB Aur b orbits the star and is not a static feature.

    Emission source, morphology, and orbital properties

    AB Aur b is detected in near-infrared wavelengths between 1.1 and 2.4 microns with SCExAO/CHARIS, at 1.1 microns with HST/NICMOS, and in unfiltered optical data with HST/STIS. The CHARIS and NICMOS data are consistent with interpreting AB Aur b as a 9 to 12 Jupiter-mass object with a radius of about 2.75 times that of Jupiter. It is also detected in H-alpha with the VAMPIRES instrument behind SCExAO, although it is unclear whether this detection originates from the protoplanet itself or surrounding scattered light.

    The emission sources responsible for AB Aur b are subject of active investigation. Its H-alpha detection could be due to active accretion or scattered light. The discovery paper matches the protoplanet's emission using a composite model consisting of a 2000–2500 K thermal component responsible for the CHARIS and NICMOS detections and magnetospheric accretion that also contributes to its detection with STIS. AB Aur b is also detected in multiple other narrow UV-optical passbands. Analysis of these data suggests that at least its optical emission is also consistent with scattered light. [5]

    The companion appears as a bright, spatially-extended source approximately 0.6 arcseconds (about 93 AU) away from the star, which contrasts with the point source nature of all other directly imaged planets. This morphology is likely due to light from AB Aur b being intercepted and reprocessed by the star's protoplanetary disk. It is not clearly detected as a concentrated source in polarized light. Because of its very large distance from the star, AB Aur b's orbit is not well constrained. Modeling thus far suggests that the companion's orbit is inclined about 43 degrees from our line-of-sight, possibly coplanar with the star's protoplanetary disk.

    Formation

    The canonical model for gas giant planet formation – core accretion – has significant difficulty forming massive gas giant planets at AB Aur b's very large distance from its host star. Instead, AB Aur b may be forming by disk (gravitational) instability, [6] where as a massive disk around a star cools, gravity causes the disk to rapidly break up into one or more planet-mass fragments. [7] The numerous spiral arms in AB Aur's protoplanetary disk are consistent with models of planet formation by disk instability.

    The system AB Aurigae made a brief appearance in the 2021 film "Don't Look Up" during depicted Subaru observations, although the companion is not visible on the displayed image.

    Related Research Articles

    <span class="mw-page-title-main">Nebular hypothesis</span> Astronomical theory about the Solar System

    The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System. It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and published in his Universal Natural History and Theory of the Heavens (1755) and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation. Some elements of the original nebular theory are echoed in modern theories of planetary formation, but most elements have been superseded.

    <span class="mw-page-title-main">Protoplanetary disk</span> Gas and dust surrounding a newly formed star

    A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gases or other material may be falling from the inner edge of the disk onto the surface of the star. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

    <span class="mw-page-title-main">Protoplanet</span> Large planetary embryo

    A protoplanet is a large planetary embryo that originated within a protoplanetary disk and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized planetesimals that gravitationally perturb each other's orbits and collide, gradually coalescing into the dominant planets.

    <span class="mw-page-title-main">HD 100546</span> Star in the constellation Musca

    HD 100546, also known as KR Muscae, is a pre-main sequence star of spectral type B8 to A0 located 353 light-years from Earth in the southern constellation of Musca. The star is surrounded by a circumstellar disk from a distance of 0.2 to 4 AU, and again from 13 AU out to a few hundred AU, with evidence for a protoplanet forming at a distance of around 47 AU.

    <span class="mw-page-title-main">HR 8799</span> Star in the constellation Pegasus

    HR 8799 is a roughly 30 million-year-old main-sequence star located 133.3 light-years away from Earth in the constellation of Pegasus. It has roughly 1.5 times the Sun's mass and 4.9 times its luminosity. It is part of a system that also contains a debris disk and at least four massive planets. Those planets, along with Fomalhaut b, were the first exoplanets whose orbital motion was confirmed by direct imaging. The star is a Gamma Doradus variable: its luminosity changes because of non-radial pulsations of its surface. The star is also classified as a Lambda Boötis star, which means its surface layers are depleted in iron peak elements. It is the only known star which is simultaneously a Gamma Doradus variable, a Lambda Boötis type, and a Vega-like star.

    <span class="mw-page-title-main">Fomalhaut b</span> Extrasolar object orbiting Fomalhaut

    Fomalhaut b, formally named Dagon, is a directly imaged extrasolar object and former candidate planet observed near the A-type main-sequence star Fomalhaut, approximately 25 light-years away in the constellation of Piscis Austrinus. The object's discovery was initially announced in 2008 and confirmed in 2012 via images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. Under the working hypothesis that the object was a planet, it was reported in January 2013 that it had a highly elliptical orbit with a period of 1,700 Earth years. The planetary hypothesis has since fallen out of favor; more recently gathered data suggests a dust or debris cloud is far more likely, and more recent analysis placed the object on an escape trajectory.

    <span class="mw-page-title-main">HR 8799 b</span> Jovian planet orbiting HR 8799

    HR 8799 b is an extrasolar planet located approximately 129 light-years away in the constellation of Pegasus, orbiting the 6th magnitude Lambda Boötis star HR 8799. It has a mass between 4 and 7 Jupiter masses and a radius from 10 to 30% larger than Jupiter's. It orbits at 68 AU from HR 8799 with an unknown eccentricity and a period of 460 years, and is the outermost known planet in the HR 8799 system. Along with two other planets orbiting HR 8799, the planet was discovered on November 13, 2008 by Marois et al., using the Keck and Gemini observatories in Hawaii. These planets were discovered using the direct imaging technique.

    <span class="mw-page-title-main">SU Aurigae</span> Star in the constellation Auriga

    SU Aurigae is a T Tauri-type variable star in the constellation Auriga. It is located about 500 light-years away in the Taurus-Auriga Star Forming Region. Its apparent magnitude is 9.30, which is dim enough that it cannot be seen with the unaided eye.

    <span class="mw-page-title-main">AB Aurigae</span> Star in the constellation Auriga

    AB Aurigae is a young Herbig Ae star in the Auriga constellation. It is located at a distance of approximately 531 light years from the Sun based on stellar parallax. This pre-main-sequence star has a stellar classification of A0Ve, matching an A-type main-sequence star with emission lines in the spectrum. It has 2.4 times the mass of the Sun and is radiating 38 times the Sun's luminosity from its photosphere at an effective temperature of 9,772 K. The radio emission from the system suggests the presence of a thermal jet originating from the star with a velocity of 300 km s−1. This is causing an estimated mass loss of 1.7×10−8 M yr−1.

    <span class="mw-page-title-main">Strategic Explorations of Exoplanets and Disks with Subaru</span> Long survey that imaged exoplanets and protoplanetary disks

    Strategic Explorations of Exoplanets and Disks with Subaru (SEEDS) is a multi-year survey that used the Subaru Telescope on Mauna Kea, Hawaii in an effort to directly image extrasolar planets and protoplanetary/debris disks around hundreds of nearby stars. SEEDS is a Japanese-led international project. It consists of some 120 researchers from a number of institutions in Japan, the U.S. and the EU. The survey's headquarters is at the National Astronomical Observatory of Japan (NAOJ) and led by Principal Investigator Motohide Tamura. The goals of the survey are to address the following key issues in the study of extrasolar planets and disks: the detection and census of exoplanets in the regions around solar-mass and massive stars; the evolution of protoplanetary disks and debris disks; and the link between exoplanets and circumstellar disks.

    <span class="mw-page-title-main">Kappa Andromedae b</span> Astronomical object orbiting Kappa Andromedae

    Kappa Andromedae b is a directly imaged substellar object and likely superjovian-mass planet orbiting Kappa Andromedae, a young B9IV star in the Andromeda constellation, about 170 light-years away. The companion's mass is roughly 13 times the mass of Jupiter. As early history on Kappa And b is filled with debate over whether it is an exoplanet or a brown dwarf, some scientists have broadly described it as a "super-Jupiter" object.

    <span class="mw-page-title-main">HD 142527</span> Young star in the constellation of Lupus

    HD 142527 is a binary star system in the constellation of Lupus. The primary star belongs to the Herbig Ae/Be star class, while the companion, discovered in 2012, is a red dwarf star or accreting protoplanet with a projected separation of less than 0.1″. The system is notable for its circumbinary protoplanetary disk and its discovery has helped refine models of planet formation. The orbit of companion is strongly inclined to the circumbinary protoplanetary disk.

    <span class="mw-page-title-main">HD 169142</span> Pre-main-sequence star in the constellation Sagittarius

    HD 169142 is a single Herbig Ae/Be star. Its surface temperature is 7650±150 K. HD 169142 is depleted of heavy elements compared to the Sun, with a metallicity Fe/H index of −0.375±0.125, but is much younger at an age of 7.5±4.5 million years. The star is rotating slowly and has relatively low stellar activity for a Herbig Ae/Be star.

    <span class="mw-page-title-main">LkCa 15</span> Star system in the constellation Taurus

    LkCa 15 is a T Tauri star in the Taurus Molecular Cloud. These types of stars are relatively young pre-main-sequence stars that show irregular variations in brightness. It has a mass that is about 97% of the Sun, an effective temperature of 4370 K, and is slightly cooler than the Sun. Its apparent magnitude is 11.91, meaning it is not visible to the naked eye.

    <span class="mw-page-title-main">PDS 70</span> T Tauri-type star in the constellation Centaurus

    PDS 70 is a very young T Tauri star in the constellation Centaurus. Located 370 light-years from Earth, it has a mass of 0.76 M and is approximately 5.4 million years old. The star has a protoplanetary disk containing two nascent exoplanets, named PDS 70b and PDS 70c, which have been directly imaged by the European Southern Observatory's Very Large Telescope. PDS 70b was the first confirmed protoplanet to be directly imaged.

    <span class="mw-page-title-main">CI Tauri</span> Star in the constellation Taurus

    CI Tauri is a young star, about 2 million years old, located approximately 500 light years away in the constellation Taurus. It is still accreting material from a debris disk at an unsteady pace, possibly modulated by the eccentric orbital motion of the inner planet. The spectral signatures of compounds of sulfur were detected from the disk.

    <span class="mw-page-title-main">Circumplanetary disk</span> Accumulation of matter around a planet

    A circumplanetary disk is a torus, pancake or ring-shaped accumulation of matter composed of gas, dust, planetesimals, asteroids or collision fragments in orbit around a planet. Around the planets, they are the reservoirs of material out of which moons may form. Such a disk can manifest itself in various ways.

    <span class="mw-page-title-main">RW Aurigae</span> Young binary star system in the constellation Auriga

    RW Aurigae is a young binary system in the constellation of Auriga about 530 light years away, belonging to the Taurus-Auriga association of the Taurus Molecular Cloud. RW Aurigae B was discovered in 1944.

    <span class="mw-page-title-main">HIP 99770 b</span> Astronomical object orbiting HIP 99770

    HIP 99770 b is a directly imaged superjovian extrasolar planet orbiting the dusty A-type star HIP 99770, detected with Gaia/Hipparcos precision astrometry and high-contrast imaging. HIP 99770 b is the first joint direct imaging + astrometric discovery of an extrasolar planet and the first planet discovered using precision astrometry from the Gaia mission.

    References

    1. 1 2 3 4 5 6 7 Currie, Thayne; Lawson, Kellen; Schneider, Glenn; et al. (April 4, 2022). "Images of embedded Jovian planet formation at a wide separation around AB Aurigae". Nature Astronomy. Springer Science and Business Media LLC. 6 (6): 751–759. arXiv: 2204.00633 . Bibcode:2022NatAs...6..751C. doi:10.1038/s41550-022-01634-x. ISSN   2397-3366. S2CID   247940163.
    2. Currie, Thayne; Lawson, Kellen; Schneider, Glenn; Lyra, Wladimir; Wisniewski, John; Grady, Carol; Guyon, Olivier; Tamura, Motohide; Kotani, Takayuki; Kawahara, Hajime; Brandt, Timothy; Uyama, Taichi; Muto, Takayuki; Dong, Ruobing; Kudo, Tomoyuki (April 4, 2022). "Images of Embedded Jovian Planet Formation At A Wide Separation Around AB Aurigae". Nature Astronomy. 6 (6): 751–759. arXiv: 2204.00633 . Bibcode:2022NatAs...6..751C. doi:10.1038/s41550-022-01634-x. hdl: 1887/3561800 . ISSN   2397-3366. S2CID   256722225.
    3. Tang, Ya-Wen; Guilloteau, Stephane; Dutrey, Anne; et al. (May 2017). "Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity". The Astrophysical Journal. 840 (1): 32. arXiv: 1704.02699 . Bibcode:2017ApJ...840...32T. doi: 10.3847/1538-4357/aa6af7 . ISSN   0004-637X. S2CID   119351517.
    4. Hurley, Timothy (April 9, 2022). "Mauna Kea scientists discover emerging planet". Honolulu Star-Advertiser. Retrieved April 10, 2022.
    5. Zhou, Yifan; Bowler, Brendan P.; Yang, Haifeng; Sanghi, Aniket; Herczeg, Gregory J.; Kraus, Adam L.; Bae, Jaehan; Long, Feng; Follette, Katherine B.; Ward-Duong, Kimberley; Zhu, Zhaohuan; Biddle, Lauren I.; Close, Laird M.; Yushu Jiang, Lillian; Wu, Ya-Lin (August 30, 2023). "UV-Optical Emission of AB Aur b is Consistent with Scattered Stellar Light". AJ: 11. arXiv: 2308.16223 . doi: 10.3847/1538-4357/aced86 .
    6. Boss, Alan (June 1997). "Giant Planet Formation by Gravitational Instability". Science. 276 (5320): 1836–1839. Bibcode:1997Sci...276.1836B. doi:10.1126/science.276.5320.1836.
    7. "Hubble Finds a Planet Forming in an Unconventional Way". HubbleSite.org. April 4, 2022. Retrieved April 10, 2022.