GLASS-z12 | |
---|---|
Observation data (J2000 epoch) | |
Constellation | Sculptor |
Right ascension | 00h 13m 59.76s [1] |
Declination | −30° 19′ 29.1″ [1] |
Redshift | 12.117±0.012 (spectroscopic) [2] 12.4+0.1 −0.3 [1] 12.42+0.27 −0.14 [3] 12.28+0.08 −0.07 [4] |
Distance |
|
Apparent magnitude (V) | 27.0 AB (F200W) [1] |
Characteristics | |
Mass | ≈1.0×109 M☉ |
Size | ~3000 ly (1 kpc) |
Half-light radius (physical) | 500 pc |
Other designations | |
GHZ2 [6] [7] ·GLASS-17487 [3] | |
References: [1] |
GLASS-z12 (formerly known as GLASS-z13) is a Lyman-break galaxy discovered by the Grism Lens-Amplified Survey from Space (GLASS) observing program using the James Webb Space Telescope's NIRCam in July 2022. [8] [9] Spectroscopic observations of GLASS-z12 by the Atacama Large Millimeter Array (ALMA) in August 2022 confirmed that the galaxy has a spectroscopic redshift of 12.117±0.012, making it one of the earliest and most distant galaxies ever discovered, dating back to just 350 million years after the Big Bang, 13.6 billion years ago. [10] [5] ALMA observations detected an emission line associated with doubly ionized oxygen (O III) at 258.7 GHz with a significance of 5σ, suggesting that there is very low dust content in GLASS-z12, if not the early universe as well. [2] Also based on oxygen-related measurements, the age of the galaxy is confirmed. [11] [12]
GLASS-z12 derives its name from the GLASS survey that discovered it and its estimated photometric redshift of approximately z = 12.4+0.1
−0.3. [1] GLASS-z12 was initially announced as GLASS-z13 because it was thought to have a higher redshift of z = 13.1. [7] [2] This redshift value was later revised down to z = 12.4 in October 2022, resulting in the renaming of this galaxy. [1]
GLASS-z12 has a light-travel distance (lookback time) of 13.6 billion years. [5] However, due to the expansion of the universe, its present proper distance is 33.2 billion light-years. [5] It was discovered alongside another galaxy, GLASS-z10, comparable to GN-z11, also one of the oldest galaxies discovered. [10]
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible light spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.
In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".
Rychard J. Bouwens is an associate professor at Leiden University. He is also a former member of the Advanced Camera for Surveys Guaranteed Time Observation team and postdoctoral research astronomer at the University of California, Santa Cruz. He obtained his bachelor's degree in physics, chemistry, and mathematics from Hope College. He then went on to earn his Ph.D. in physics at the University of California, Berkeley under the supervision of Joseph Silk and also worked with Tom Broadhurst.
The Great Observatories Origins Deep Survey, or GOODS, is an astronomical survey combining deep observations from three of NASA's Great Observatories: the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory, along with data from other space-based telescopes, such as XMM Newton, and some of the world's most powerful ground-based telescopes.
A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of luminous blue compact galaxy that is undergoing very high rates of star formation. Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).
Lyman-break galaxies are star-forming galaxies at high redshift that are selected using the differing appearance of the galaxy in several imaging filters due to the position of the Lyman limit. The technique has primarily been used to select galaxies at redshifts of z = 3–4 using ultraviolet and optical filters, but progress in ultraviolet astronomy and in infrared astronomy has allowed the use of this technique at lower and higher redshifts using ultraviolet and near-infrared filters.
MACS0647-JD is a galaxy with a redshift of about z = 10.7, equivalent to a light travel distance of 13.26 billion light-years. If the distance estimate is correct, it formed about 427 million years after the Big Bang.
MACS1149-JD1 is a young galaxy that is known for being one of the farthest known galaxies from Earth. It galaxy was discovered in 2014, and confirmed in 2018. The JD1 galaxy is at a redshift of about z=9.11, or about 13.28 billion ly (4.07 billion pc) away from Earth meaning that it formed when the universe was around 500 million years old.
ASW0009io9 (9io9) is a gravitationally lensed system of two galaxies. The nearer galaxy is approximately 2 billion light-years (610 Mpc) from Earth and is designated SDSS J020941.27+001558.4, while the lensed galaxy is 10 billion light-years (3.1 Gpc) distant and is designated ASW0009io9. It was discovered in January 2014 by a group of citizen scientists, while classifying images on the website Spacewarps.org. The discovery was announced on the BBC television programme Stargazing Live.
GN-z11 is a high-redshift galaxy found in the constellation Ursa Major. It is among the farthest known galaxies from Earth ever discovered. The 2015 discovery was published in a 2016 paper headed by Pascal Oesch and Gabriel Brammer. Up until the discovery of JADES-GS-z13-0 in 2022 by the James Webb Space Telescope, GN-z11 was the oldest and most distant known galaxy yet identified in the observable universe, having a spectroscopic redshift of z = 10.957, which corresponds to a proper distance of approximately 32 billion light-years. Data published in 2024 established that the galaxy contains the most distant, and therefore earliest, black hole known in the universe, estimated at around 1.6 million solar masses.
HD1 is a proposed high-redshift galaxy, which is considered to be one of the earliest and most distant known galaxies yet identified in the observable universe. The galaxy, with an estimated redshift of approximately z = 13.27, is seen as it was about 324 million years after the Big Bang, which was 13.787 billion years ago. It has a light-travel distance of 13.463 billion light-years from Earth, and, due to the expansion of the universe, a present proper distance of 33.288 billion light-years.
CEERS-93316 is a high-redshift galaxy with a spectroscopic redshift z=4.9. Significantly, the redshift that was initially reported was photometric and would have made CEERS-93316 the earliest and most distant known galaxy observed.
JADES-GS-z13-0 is a high-redshift Lyman-break galaxy discovered by the James Webb Space Telescope (JWST) during NIRCam imaging for the JWST Advanced Deep Extragalactic Survey (JADES) on 29 September 2022. Spectroscopic observations by JWST's NIRSpec instrument in October 2022 confirmed the galaxy's redshift of z = 13.2 to a high accuracy, establishing it as the oldest and most distant spectroscopically-confirmed galaxy at the time, with a light-travel distance of 13.4 billion years. Due to the expansion of the universe, its present proper distance is approximately 33 billion light-years. In 2024, two older and more distant galaxies, JADES-GS-z14-0 and JADES-GS-z14-1, were found.
F200DB-045 is a candidate high-redshift galaxy, with an estimated redshift of approximately z = 20.4, corresponding to 168 million years after the Big Bang. If confirmed, it would be one of the earliest and most distant known galaxies observed.
Maisie's Galaxy is a distant galaxy located at z=11.4 that existed 390 million years after the beginning of the universe.
CEERS-2112 is the most distant barred spiral galaxy observed as of 2023. The light observed from the galaxy was emitted when the universe was only 2.1 billion years old. It was determined to be similar in mass to the Milky Way.
UNCOVER-z13 is a high-redshift Lyman-break galaxy discovered by the James Webb Space Telescope (JWST) during NIRCam imaging for the JWST Ultradeep NIRSpec and NIRCam Observations before the Epoch of Reionization (UNCOVER) project on November 14, 2023. UNCOVER-z13 is within Abell 2744 supercluster in the constellation Sculptor.
UNCOVER-z12 is a high-redshift Lyman-break galaxy discovered by the James Webb Space Telescope (JWST) during NIRCam imaging for the JWST Ultradeep NIRSpec and NIRCam Observations before the Epoch of Reionization (UNCOVER) project in November 2023. UNCOVER-z12 is within the Abell 2744 supercluster in the constellation Sculptor. It is the 5th-most distant object ever discovered as of 2024, and is estimated to be 32.21 giga-lightyears from Earth.