Part of a series on |
Physical cosmology |
---|
Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity (such as the luminosity of a distant quasar, the redshift of a distant galaxy, or the angular size of the acoustic peaks in the cosmic microwave background (CMB) power spectrum) to another quantity that is not directly observable, but is more convenient for calculations (such as the comoving coordinates of the quasar, galaxy, etc.). The distance measures discussed here all reduce to the common notion of Euclidean distance at low redshift.
In accord with our present understanding of cosmology, these measures are calculated within the context of general relativity, where the Friedmann–Lemaître–Robertson–Walker solution is used to describe the universe.
There are a few different definitions of "distance" in cosmology which are all asymptotic one to another for small redshifts. The expressions for these distances are most practical when written as functions of redshift , since redshift is always the observable. They can also be written as functions of scale factor
In the remainder of this article, the peculiar velocity is assumed to be negligible unless specified otherwise.
We first give formulas for several distance measures, and then describe them in more detail further down. Defining the "Hubble distance" as
where is the speed of light, is the Hubble parameter today, and h is the dimensionless Hubble constant, all the distances are asymptotic to for small z.
According to the Friedmann equations, we also define a dimensionless Hubble parameter: [1]
Here, and are normalized values of the present radiation energy density, matter density, and "dark energy density", respectively (the latter representing the cosmological constant), and determines the curvature. The Hubble parameter at a given redshift is then .
The formula for comoving distance, which serves as the basis for most of the other formulas, involves an integral. Although for some limited choices of parameters (see below) the comoving distance integral has a closed analytic form, in general—and specifically for the parameters of our universe—we can only find a solution numerically. Cosmologists commonly use the following measures for distances from the observer to an object at redshift along the line of sight (LOS): [2]
Peebles calls the transverse comoving distance the "angular size distance", which is not to be mistaken for the angular diameter distance. [1] Occasionally, the symbols or are used to denote both the comoving and the angular diameter distance. Sometimes, the light-travel distance is also called the "lookback distance" and/or "lookback time".[ citation needed ]
In real observations, the movement of the Earth with respect to the Hubble flow has an effect on the observed redshift.[ citation needed ]
There are actually two notions of redshift. One is the redshift that would be observed if both the Earth and the object were not moving with respect to the "comoving" surroundings (the Hubble flow), defined by the cosmic microwave background. The other is the actual redshift measured, which depends both on the peculiar velocity of the object observed and on their peculiar velocity. Since the Solar System is moving at around 370 km/s in a direction between Leo and Crater, this decreases for distant objects in that direction by a factor of about 1.0012 and increases it by the same factor for distant objects in the opposite direction. (The speed of the motion of the Earth around the Sun is only 30 km/s.)[ citation needed ]
The comoving distance between fundamental observers, i.e. observers that are both moving with the Hubble flow, does not change with time, as comoving distance accounts for the expansion of the universe. Comoving distance is obtained by integrating the proper distances of nearby fundamental observers along the line of sight (LOS), whereas the proper distance is what a measurement at constant cosmic time would yield.[ citation needed ]
In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to measure distances between objects; the comoving distance is the proper distance at the present time.[ citation needed ]
The comoving distance (with a small correction for our own motion) is the distance that would be obtained from parallax, because the parallax in degrees equals the ratio of an astronomical unit to the circumference of a circle at the present time going through the sun and centred on the distant object, multiplied by 360°. However, objects beyond a megaparsec have parallax too small to be measured (the Gaia space telescope measures the parallax of the brightest stars with a precision of 7 microarcseconds), so the parallax of galaxies outside our Local Group is too small to be measured.
There is a closed-form expression for the integral in the definition of the comoving distance if or, by substituting the scale factor for , if . Our universe now seems to be closely represented by In this case, we have:
where
The comoving distance should be calculated using the value of z that would pertain if neither the object nor we had a peculiar velocity.
Together with the scale factor it gives the proper distance of the object when the light we see now was emitted by the it, and set off on its journey to us:
Proper distance roughly corresponds to where a distant object would be at a specific moment of cosmological time, which can change over time due to the expansion of the universe. Comoving distance factors out the expansion of the universe, which gives a distance that does not change in time due to the expansion of space (though this may change due to other, local factors, such as the motion of a galaxy within a cluster); the comoving distance is the proper distance at the present time.[ citation needed ]
Two comoving objects at constant redshift that are separated by an angle on the sky are said to have the distance , where the transverse comoving distance is defined appropriately.[ citation needed ]
An object of size at redshift that appears to have angular size has the angular diameter distance of . This is commonly used to observe so called standard rulers, for example in the context of baryon acoustic oscillations.
When accounting for the earth's peculiar velocity, the redshift that would pertain in that case should be used but should be corrected for the motion of the solar system by a factor between 0.99867 and 1.00133, depending on the direction. (If one starts to move with velocity v towards an object, at any distance, the angular diameter of that object decreases by a factor of )
If the intrinsic luminosity of a distant object is known, we can calculate its luminosity distance by measuring the flux and determine , which turns out to be equivalent to the expression above for . This quantity is important for measurements of standard candles like type Ia supernovae, which were first used to discover the acceleration of the expansion of the universe.
When accounting for the earth's peculiar velocity, the redshift that would pertain in that case should be used for but the factor should use the measured redshift, and another correction should be made for the peculiar velocity of the object by multiplying by where now v is the component of the object's peculiar velocity away from us. In this way, the luminosity distance will be equal to the angular diameter distance multiplied by where z is the measured redshift, in accordance with Etherington's reciprocity theorem (see below).
(also known as "lookback time" or "lookback distance") [3]
This distance is the time that it took light to reach the observer from the object multiplied by the speed of light. For instance, the radius of the observable universe in this distance measure becomes the age of the universe multiplied by the speed of light (1 light year/year), which turns out to be approximately 13.8 billion light years.[ citation needed ]
There is a closed-form solution of the light-travel distance if involving the inverse hyperbolic functions or (or involving inverse trigonometric functions if the cosmological constant has the other sign). If then there is a closed-form solution for but not for
Note that the comoving distance is recovered from the transverse comoving distance by taking the limit , such that the two distance measures are equivalent in a flat universe.
There are websites for calculating light-travel distance from redshift. [4] [5] [6] [7]
The age of the universe then becomes , and the time elapsed since redshift until now is:
The Etherington's distance-duality equation [8] is the relationship between the luminosity distance of standard candles and the angular-diameter distance. It is expressed as follows:
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation. The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect, and gravitational potentials, which gravitationally redshift escaping radiation. All sufficiently distant light sources show cosmological redshift corresponding to recession speeds proportional to their distances from Earth, a fact known as Hubble's law that implies the universe is expanding.
Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther away that an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.
The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.
In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe, giving a distance that does not change in time due to the expansion of space. Proper distance roughly corresponds to where a distant object would be at a specific moment of cosmological time, which can change over time due to the expansion of the universe. Comoving distance and proper distance are defined to be equal at the present time. At other times, the Universe's expansion results in the proper distance changing, while the comoving distance remains constant.
The particle horizon is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, but rather the speed of light times the conformal time. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.
The Friedmann–Lemaître–Robertson–Walker metric is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.
In relativity, proper time along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.
In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.
The horizon problem is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regions of space in the absence of a mechanism that sets the same initial conditions everywhere. It was first pointed out by Wolfgang Rindler in 1956.
In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of 13.787±0.020 billion years as interpreted with the Lambda-CDM concordance model as of 2021; and a measurement based on the observations of the local, modern universe, which suggest a younger age. The uncertainty of the first kind of measurement has been narrowed down to 20 million years, based on a number of studies that all show similar figures for the age. These studies include researches of the microwave background radiation by the Planck spacecraft, the Wilkinson Microwave Anisotropy Probe and other space probes. Measurements of the cosmic background radiation give the cooling time of the universe since the Big Bang, and measurements of the expansion rate of the universe can be used to calculate its approximate age by extrapolating backwards in time. The range of the estimate is also within the range of the estimate for the oldest observed star in the universe.
The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations.
The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:
The Friedmann equations, also known as the Friedmann-Lemaître or FL equations, are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.
In astronomy, angular diameter distance is a distance defined in terms of an object's physical size, , and its angular size, , as viewed from Earth:
Luminosity distanceDL is defined in terms of the relationship between the absolute magnitude M and apparent magnitude m of an astronomical object.
In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms, which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy by constraining cosmological parameters.
In astrophysics, the virial mass is the mass of a gravitationally bound astrophysical system, assuming the virial theorem applies. In the context of galaxy formation and dark matter halos, the virial mass is defined as the mass enclosed within the virial radius of a gravitationally bound system, a radius within which the system obeys the virial theorem. The virial radius is determined using a "top-hat" model. A spherical "top hat" density perturbation destined to become a galaxy begins to expand, but the expansion is halted and reversed due to the mass collapsing under gravity until the sphere reaches equilibrium – it is said to be virialized. Within this radius, the sphere obeys the virial theorem which says that the average kinetic energy is equal to minus one half times the average potential energy, , and this radius defines the virial radius.
Mattig's formula was an important formula in observational cosmology and extragalactic astronomy which gives relation between radial coordinate and redshift of a given source. It depends on the cosmological model being used and is used to calculate luminosity distance in terms of redshift.
The cosmic age problem was a historical problem in astronomy concerning the age of the universe. The problem was that at various times in the 20th century, the universe was estimated to be younger than the oldest observed stars. Estimates of the universe's age came from measurements of the current expansion rate of the universe, the Hubble constant , as well as cosmological models relating to the universe's matter and energy contents. Issues with measuring as well as not knowing about the existence of dark energy led to spurious estimates of the age. Additionally, objects such as galaxies, stars, and planets could not have existed in the extreme temperatures and densities shortly after the Big Bang.