Comoving and proper distances

Last updated

In standard cosmology, comoving distance and proper distance (or physical distance) are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe, giving a distance that does not change in time except due to local factors, such as the motion of a galaxy within a cluster. [1] Proper distance roughly corresponds to where a distant object would be at a specific moment of cosmological time, which can change over time due to the expansion of the universe. Comoving distance and proper distance are defined to be equal at the present time. At other times, the Universe's expansion results in the proper distance changing, while the comoving distance remains constant.

Contents

Comoving coordinates

The evolution of the universe and its horizons in comoving distances. The x-axis is distance, in billions of light years; the y-axis is time, in billions of years since the Big Bang. This model of the universe includes dark energy which causes an accelerating expansion after a certain point in time, and results in an event horizon beyond which we can never see. Spacetime-diagram-flat-universe-comoving-coordinates.png
The evolution of the universe and its horizons in comoving distances. The x-axis is distance, in billions of light years; the y-axis is time, in billions of years since the Big Bang. This model of the universe includes dark energy which causes an accelerating expansion after a certain point in time, and results in an event horizon beyond which we can never see.

Although general relativity allows the formulation of the laws of physics using arbitrary coordinates, some coordinate choices are more natural or easier to work with. Comoving coordinates are an example of such a natural coordinate choice. They assign constant spatial coordinate values to observers who perceive the universe as isotropic. Such observers are called "comoving" observers because they move along with the Hubble flow.

A comoving observer is the only observer who will perceive the universe, including the cosmic microwave background radiation, to be isotropic. Non-comoving observers will see regions of the sky systematically blue-shifted or red-shifted. Thus isotropy, particularly isotropy of the cosmic microwave background radiation, defines a special local frame of reference called the comoving frame. The velocity of an observer relative to the local comoving frame is called the peculiar velocity of the observer.

Most large lumps of matter, such as galaxies, are nearly comoving, so that their peculiar velocities (owing to gravitational attraction) are small compared to their Hubble-flow velocity seen by observers in moderately nearby galaxies, (i.e. as seen from galaxies just outside the group local to the observed "lump of matter").

Comoving coordinates separate the exactly proportional expansion in a Friedmannian universe in spatial comoving coordinates from the scale factor
a
(
t
)
.
{\displaystyle a(t)~.}
This example is for the LCDM model. Cosmos-animation Lambda-CDM.gif
Comoving coordinates separate the exactly proportional expansion in a Friedmannian universe in spatial comoving coordinates from the scale factor This example is for the ΛCDM model.

The comoving time coordinate is the elapsed time since the Big Bang according to a clock of a comoving observer and is a measure of cosmological time. The comoving spatial coordinates tell where an event occurs while cosmological time tells when an event occurs. Together, they form a complete coordinate system, giving both the location and time of an event.

Space in comoving coordinates is usually referred to as being "static", as most bodies on the scale of galaxies or larger are approximately comoving, and comoving bodies have static, unchanging comoving coordinates. So for a given pair of comoving galaxies, while the proper distance between them would have been smaller in the past and will become larger in the future due to the expansion of the universe, the comoving distance between them remains constant at all times.

The expanding Universe has an increasing scale factor which explains how constant comoving distances are reconciled with proper distances that increase with time.

Comoving distance and proper distance

Comoving distance is the distance between two points measured along a path defined at the present cosmological time. For objects moving with the Hubble flow, it is deemed to remain constant in time. The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following formula (derived using the Friedmann–Lemaître–Robertson–Walker metric): where a(t) is the scale factor, te is the time of emission of the photons detected by the observer, t is the present time, and c is the speed of light in vacuum.

Despite being an integral over time, this expression gives the correct distance that would be measured by a set of comoving local rulers at fixed time t, i.e. the "proper distance" (as defined below) after accounting for the time-dependent comoving speed of light via the inverse scale factor term in the integrand. By "comoving speed of light", we mean the velocity of light through comoving coordinates [] which is time-dependent even though locally, at any point along the null geodesic of the light particles, an observer in an inertial frame always measures the speed of light as in accordance with special relativity. For a derivation see "Appendix A: Standard general relativistic definitions of expansion and horizons" from Davis & Lineweaver 2004. [2] In particular, see eqs. 16–22 in the referenced 2004 paper [note: in that paper the scale factor is defined as a quantity with the dimension of distance while the radial coordinate is dimensionless.]

Definitions

Many textbooks use the symbol for the comoving distance. However, this must be distinguished from the coordinate distance in the commonly used comoving coordinate system for a FLRW universe where the metric takes the form (in reduced-circumference polar coordinates, which only works half-way around a spherical universe):

In this case the comoving coordinate distance is related to by: [3] [4] [5]

Most textbooks and research papers define the comoving distance between comoving observers to be a fixed unchanging quantity independent of time, while calling the dynamic, changing distance between them "proper distance". On this usage, comoving and proper distances are numerically equal at the current age of the universe, but will differ in the past and in the future; if the comoving distance to a galaxy is denoted , the proper distance at an arbitrary time is simply given by where is the scale factor (e.g. Davis & Lineweaver 2004). [2] The proper distance between two galaxies at time t is just the distance that would be measured by rulers between them at that time. [6]

Uses of the proper distance

The evolution of the universe and its horizons in proper distances. The x-axis is distance, in billions of light years; the y-axis is time, in billions of years since the Big Bang. This is the same model as in the earlier figure, with dark energy and an event horizon. Spacetime-diagram-flat-universe-proper-coordinates.png
The evolution of the universe and its horizons in proper distances. The x-axis is distance, in billions of light years; the y-axis is time, in billions of years since the Big Bang. This is the same model as in the earlier figure, with dark energy and an event horizon.

Cosmological time is identical to locally measured time for an observer at a fixed comoving spatial position, that is, in the local comoving frame. Proper distance is also equal to the locally measured distance in the comoving frame for nearby objects. To measure the proper distance between two distant objects, one imagines that one has many comoving observers in a straight line between the two objects, so that all of the observers are close to each other, and form a chain between the two distant objects. All of these observers must have the same cosmological time. Each observer measures their distance to the nearest observer in the chain, and the length of the chain, the sum of distances between nearby observers, is the total proper distance. [7]

It is important to the definition of both comoving distance and proper distance in the cosmological sense (as opposed to proper length in special relativity) that all observers have the same cosmological age. For instance, if one measured the distance along a straight line or spacelike geodesic between the two points, observers situated between the two points would have different cosmological ages when the geodesic path crossed their own world lines, so in calculating the distance along this geodesic one would not be correctly measuring comoving distance or cosmological proper distance. Comoving and proper distances are not the same concept of distance as the concept of distance in special relativity. This can be seen by considering the hypothetical case of a universe empty of mass, where both sorts of distance can be measured. When the density of mass in the FLRW metric is set to zero (an empty 'Milne universe'), then the cosmological coordinate system used to write this metric becomes a non-inertial coordinate system in the Minkowski spacetime of special relativity where surfaces of constant Minkowski proper-time τ appear as hyperbolas in the Minkowski diagram from the perspective of an inertial frame of reference. [8] In this case, for two events which are simultaneous according to the cosmological time coordinate, the value of the cosmological proper distance is not equal to the value of the proper length between these same events, [9] which would just be the distance along a straight line between the events in a Minkowski diagram (and a straight line is a geodesic in flat Minkowski spacetime), or the coordinate distance between the events in the inertial frame where they are simultaneous.

If one divides a change in proper distance by the interval of cosmological time where the change was measured (or takes the derivative of proper distance with respect to cosmological time) and calls this a "velocity", then the resulting "velocities" of galaxies or quasars can be above the speed of light, c. Such superluminal expansion is not in conflict with special or general relativity nor the definitions used in physical cosmology. Even light itself does not have a "velocity" of c in this sense; the total velocity of any object can be expressed as the sum where is the recession velocity due to the expansion of the universe (the velocity given by Hubble's law) and is the "peculiar velocity" measured by local observers (with and , the dots indicating a first derivative), so for light is equal to c (−c if the light is emitted towards our position at the origin and +c if emitted away from us) but the total velocity is generally different from c. [2] Even in special relativity the coordinate speed of light is only guaranteed to be c in an inertial frame; in a non-inertial frame the coordinate speed may be different from c. [10] In general relativity no coordinate system on a large region of curved spacetime is "inertial", but in the local neighborhood of any point in curved spacetime we can define a "local inertial frame" in which the local speed of light is c [11] and in which massive objects such as stars and galaxies always have a local speed smaller than c. The cosmological definitions used to define the velocities of distant objects are coordinate-dependent – there is no general coordinate-independent definition of velocity between distant objects in general relativity. [12] How best to describe and popularize that expansion of the universe is (or at least was) very likely proceeding at the greatest scale at above the speed of light, has caused a minor amount of controversy. One viewpoint is presented in Davis and Lineweaver, 2004. [2]

Short distances vs. long distances

Within small distances and short trips, the expansion of the universe during the trip can be ignored. This is because the travel time between any two points for a non-relativistic moving particle will just be the proper distance (that is, the comoving distance measured using the scale factor of the universe at the time of the trip rather than the scale factor "now") between those points divided by the velocity of the particle. If the particle is moving at a relativistic velocity, the usual relativistic corrections for time dilation must be made.

See also

Related Research Articles

Faster-than-light travel and communication are the conjectural propagation of matter or information faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light, and that nothing may travel faster.

<span class="mw-page-title-main">Redshift</span> Change of wavelength in photons during travel

In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation. The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect, and gravitational potentials, which gravitationally redshift escaping radiation. All sufficiently distant light sources show cosmological redshift corresponding to recession speeds proportional to their distances from Earth, a fact known as Hubble's law that implies the universe is expanding.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference. This is known as the principle of relativity.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events occur.

<span class="mw-page-title-main">Hubble's law</span> Observation in physical cosmology

Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faster it moves away from the Earth. A galaxy's recessional velocity is typically determined by measuring its redshift, a shift in the frequency of light emitted by the galaxy.

<span class="mw-page-title-main">Observable universe</span> All of space observable from the Earth at the present

The observable universe is a spherical region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them, or a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.

<span class="mw-page-title-main">Length contraction</span> Contraction of length in the direction of propagation in Minkowski space

Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald contraction and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.

<span class="mw-page-title-main">Friedmann–Lemaître–Robertson–Walker metric</span> Metric based on the exact solution of Einsteins field equations of general relativity

The Friedmann–Lemaître–Robertson–Walker metric is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.

<span class="mw-page-title-main">Proper time</span> Elapsed time between two events as measured by a clock that passes through both events

In relativity, proper time along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.

Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential, the slower time passes, speeding up as the gravitational potential increases. Albert Einstein originally predicted this in his theory of relativity, and it has since been confirmed by tests of general relativity.

The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, this is a key parameter of the Friedmann equations.

A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons.

Recessional velocity is the rate at which an extragalactic astronomical object recedes from an observer as a result of the expansion of the universe. It can be measured by observing the wavelength shifts of spectral lines emitted by the object, known as the object's cosmological redshift.

<span class="mw-page-title-main">Expansion of the universe</span> Increase in distance between parts of the universe over time

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies move away at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

<span class="mw-page-title-main">Milne model</span> Cosmological model

The Milne model was a special-relativistic cosmological model proposed by Edward Arthur Milne in 1935. It is mathematically equivalent to a special case of the FLRW model in the limit of zero energy density and it obeys the cosmological principle. The Milne model is also similar to Rindler space in that both are simple re-parameterizations of flat Minkowski space.

<span class="mw-page-title-main">Distance measure</span> Definitions for distance between two objects or events in the universe

Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity to another quantity that is not directly observable, but is more convenient for calculations. The distance measures discussed here all reduce to the common notion of Euclidean distance at low redshift.

<span class="mw-page-title-main">Spacetime diagram</span> Graph of space and time in special relativity

A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity. Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

Cosmic time, or cosmological time, is the time coordinate commonly used in the Big Bang models of physical cosmology. This concept of time avoids some issues related to relativity by being defined within a solution to the equations of general relativity widely used in cosmology.

In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s.

References

  1. Huterer, Dragan (2023). A Course in Cosmology. Cambridge University Press. ISBN   978-1-316-51359-0.
  2. 1 2 3 4 Davis, T. M.; Lineweaver, C. H. (2004). "Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe". Publications of the Astronomical Society of Australia. 21 (1): 97–109. arXiv: astro-ph/0310808v2 . Bibcode:2004PASA...21...97D. doi:10.1071/AS03040. S2CID   13068122.
  3. Roos, Matts (2015). Introduction to Cosmology (4th ed.). John Wiley & Sons. p. 37. ISBN   978-1-118-92329-0. Extract of page 37 (see equation 2.39)
  4. Webb, Stephen (1999). Measuring the Universe: The Cosmological Distance Ladder (illustrated ed.). Springer Science & Business Media. p. 263. ISBN   978-1-85233-106-1. Extract of page 263
  5. Lachièze-Rey, Marc; Gunzig, Edgard (1999). The Cosmological Background Radiation (illustrated ed.). Cambridge University Press. pp. 9–12. ISBN   978-0-521-57437-2. Extract of page 11
  6. Hogg, David W. (1999-05-11). "Distance measures in cosmology". p. 4. arXiv: astro-ph/9905116 .
  7. Steven Weinberg, Gravitation and Cosmology (1972), p. 415
  8. See the diagram on p. 28 of Physical Foundations of Cosmology by V. F. Mukhanov, along with the accompanying discussion.
  9. Wright, E. L. (2009). "Homogeneity and Isotropy" . Retrieved 28 February 2015.
  10. Petkov, Vesselin (2009). Relativity and the Nature of Spacetime. Springer Science & Business Media. p. 219. ISBN   978-3-642-01962-3.
  11. Raine, Derek; Thomas, E. G. (2001). An Introduction to the Science of Cosmology. CRC Press. p. 94. ISBN   978-0-7503-0405-4.
  12. J. Baez and E. Bunn (2006). "Preliminaries". University of California. Retrieved 28 February 2015.

Further reading