Trigonometry |
---|
Reference |
Laws and theorems |
Calculus |
Mathematicians |
In mathematics, the inverse trigonometric functions (occasionally also called antitrigonometric, [1] cyclometric, [2] or arcus functions [3] ) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, [4] and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.) This notation arises from the following geometric relationships:[ citation needed ] when measuring in radians, an angle of θ radians will correspond to an arc whose length is rθ, where r is the radius of the circle. Thus in the unit circle, the cosine of x function is both the arc and the angle, because the arc of a circle of radius 1 is the same as the angle. Or, "the arc whose cosine is x" is the same as "the angle whose cosine is x", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. [5] In computer programming languages, the inverse trigonometric functions are often called by the abbreviated forms asin, acos, atan. [6]
The notations sin−1(x), cos−1(x), tan−1(x), etc., as introduced by John Herschel in 1813, [7] [8] are often used as well in English-language sources, [1] much more than the also established sin[−1](x), cos[−1](x), tan[−1](x) – conventions consistent with the notation of an inverse function, that is useful (for example) to define the multivalued version of each inverse trigonometric function: However, this might appear to conflict logically with the common semantics for expressions such as sin2(x) (although only sin2x, without parentheses, is the really common use), which refer to numeric power rather than function composition, and therefore may result in confusion between notation for the reciprocal (multiplicative inverse) and inverse function. [9]
The confusion is somewhat mitigated by the fact that each of the reciprocal trigonometric functions has its own name — for example, (cos(x))−1 = sec(x). Nevertheless, certain authors advise against using it, since it is ambiguous. [1] [10] Another precarious convention used by a small number of authors is to use an uppercase first letter, along with a “−1” superscript: Sin−1(x), Cos−1(x), Tan−1(x), etc. [11] Although it is intended to avoid confusion with the reciprocal, which should be represented by sin−1(x), cos−1(x), etc., or, better, by sin−1x, cos−1x, etc., it in turn creates yet another major source of ambiguity, especially since many popular high-level programming languages (e.g. Mathematica and MAGMA) use those very same capitalised representations for the standard trig functions, whereas others (Python, SymPy, NumPy, Matlab, MAPLE, etc.) use lower-case.
Hence, since 2009, the ISO 80000-2 standard has specified solely the "arc" prefix for the inverse functions.
Since none of the six trigonometric functions are one-to-one, they must be restricted in order to have inverse functions. Therefore, the result ranges of the inverse functions are proper (i.e. strict) subsets of the domains of the original functions.
For example, using function in the sense of multivalued functions, just as the square root function could be defined from the function is defined so that For a given real number with there are multiple (in fact, countably infinitely many) numbers such that ; for example, but also etc. When only one value is desired, the function may be restricted to its principal branch. With this restriction, for each in the domain, the expression will evaluate only to a single value, called its principal value. These properties apply to all the inverse trigonometric functions.
The principal inverses are listed in the following table.
Name | Usual notation | Definition | Domain of for real result | Range of usual principal value (radians) | Range of usual principal value (degrees) |
---|---|---|---|---|---|
arcsine | x = sin(y) | ||||
arccosine | x = cos(y) | ||||
arctangent | x = tan(y) | all real numbers | |||
arccotangent | x = cot(y) | all real numbers | |||
arcsecant | x = sec(y) | ||||
arccosecant | x = csc(y) | ||||
Note: Some authors [ citation needed ] define the range of arcsecant to be , because the tangent function is nonnegative on this domain. This makes some computations more consistent. For example, using this range, whereas with the range , we would have to write since tangent is nonnegative on but nonpositive on For a similar reason, the same authors define the range of arccosecant to be or
If is allowed to be a complex number, then the range of applies only to its real part.
The table below displays names and domains of the inverse trigonometric functions along with the range of their usual principal values in radians.
Name | Symbol | Domain | Image/Range | Inverse function | Domain | Image of principal values | ||||
---|---|---|---|---|---|---|---|---|---|---|
sine | ||||||||||
cosine | ||||||||||
tangent | ||||||||||
cotangent | ||||||||||
secant | ||||||||||
cosecant |
The symbol denotes the set of all real numbers and denotes the set of all integers. The set of all integer multiples of is denoted by
The symbol denotes set subtraction so that, for instance, is the set of points in (that is, real numbers) that are not in the interval
The Minkowski sum notation and that is used above to concisely write the domains of is now explained.
Domain of cotangent and cosecant : The domains of and are the same. They are the set of all angles at which i.e. all real numbers that are not of the form for some integer
Domain of tangent and secant : The domains of and are the same. They are the set of all angles at which
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of
This periodicity is reflected in the general inverses, where is some integer.
The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions. It is assumed that the given values and all lie within appropriate ranges so that the relevant expressions below are well-defined. Note that "for some " is just another way of saying "for some integer "
The symbol is logical equality and indicates that if the left hand side is true then so is the right hand side and, conversely, if the right hand side is true then so is the left hand side (see this footnote [note 1] for more details and an example illustrating this concept).
Equation | if and only if | Solution | ||||||
---|---|---|---|---|---|---|---|---|
for some | ||||||||
for some | ||||||||
for some | ||||||||
for some | ||||||||
for some | ||||||||
for some |
where the first four solutions can be written in expanded form as:
Equation | if and only if | Solution | ||||||
---|---|---|---|---|---|---|---|---|
or | for some | |||||||
or | for some | |||||||
or | for some | |||||||
or | for some |
For example, if then for some While if then for some where will be even if and it will be odd if The equations and have the same solutions as and respectively. In all equations above except for those just solved (i.e. except for / and /), the integer in the solution's formula is uniquely determined by (for fixed and ).
With the help of integer parity it is possible to write a solution to that doesn't involve the "plus or minus" symbol:
And similarly for the secant function,
where equals when the integer is even, and equals when it's odd.
The solutions to and involve the "plus or minus" symbol whose meaning is now clarified. Only the solution to will be discussed since the discussion for is the same. We are given between and we know that there is an angle in some interval that satisfies We want to find this The table above indicates that the solution is which is a shorthand way of saying that (at least) one of the following statement is true:
As mentioned above, if (which by definition only happens when ) then both statements (1) and (2) hold, although with different values for the integer : if is the integer from statement (1), meaning that holds, then the integer for statement (2) is (because ). However, if then the integer is unique and completely determined by If (which by definition only happens when ) then (because and so in both cases is equal to ) and so the statements (1) and (2) happen to be identical in this particular case (and so both hold). Having considered the cases and we now focus on the case where and So assume this from now on. The solution to is still which as before is shorthand for saying that one of statements (1) and (2) is true. However this time, because and statements (1) and (2) are different and furthermore, exactly one of the two equalities holds (not both). Additional information about is needed to determine which one holds. For example, suppose that and that all that is known about is that (and nothing more is known). Then and moreover, in this particular case (for both the case and the case) and so consequently, This means that could be either or Without additional information it is not possible to determine which of these values has. An example of some additional information that could determine the value of would be knowing that the angle is above the -axis (in which case ) or alternatively, knowing that it is below the -axis (in which case ).
The table below shows how two angles and must be related if their values under a given trigonometric function are equal or negatives of each other.
Equation | if and only if | Solution (for some ) | Also a solution to |
---|---|---|---|
The vertical double arrow in the last row indicates that and satisfy if and only if they satisfy
Thus given a single solution to an elementary trigonometric equation ( is such an equation, for instance, and because always holds, is always a solution), the set of all solutions to it are:
If solves | then | Set of all solutions (in terms of ) | ||||||
---|---|---|---|---|---|---|---|---|
then | ||||||||
then | ||||||||
then | ||||||||
then | ||||||||
then | ||||||||
then |
The equations above can be transformed by using the reflection and shift identities: [12]
Argument: | |||||
---|---|---|---|---|---|
These formulas imply, in particular, that the following hold:
where swapping swapping and swapping gives the analogous equations for respectively.
So for example, by using the equality the equation can be transformed into which allows for the solution to the equation (where ) to be used; that solution being: which becomes: where using the fact that and substituting proves that another solution to is: The substitution may be used express the right hand side of the above formula in terms of instead of
Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length then applying the Pythagorean theorem and definitions of the trigonometric ratios. It is worth noting that for arcsecant and arccosecant, the diagram assumes that is positive, and thus the result has to be corrected through the use of absolute values and the signum (sgn) operation.
Diagram | ||||
---|---|---|---|---|
Complementary angles:
Negative arguments:
Reciprocal arguments:
The identities above can be used with (and derived from) the fact that and are reciprocals (i.e. ), as are and and and
Useful identities if one only has a fragment of a sine table:
Whenever the square root of a complex number is used here, we choose the root with the positive real part (or positive imaginary part if the square was negative real).
A useful form that follows directly from the table above is
It is obtained by recognizing that .
From the half-angle formula, , we get:
This is derived from the tangent addition formula
by letting
The derivatives for complex values of z are as follows:
Only for real values of x:
These formulas can be derived in terms of the derivatives of trigonometric functions. For example, if , then so
Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:
When x equals 1, the integrals with limited domains are improper integrals, but still well-defined.
Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative, , as a binomial series, and integrating term by term (using the integral definition as above). The series for arctangent can similarly be derived by expanding its derivative in a geometric series, and applying the integral definition above (see Leibniz series).
Series for the other inverse trigonometric functions can be given in terms of these according to the relationships given above. For example, , , and so on. Another series is given by: [13]
Leonhard Euler found a series for the arctangent that converges more quickly than its Taylor series:
(The term in the sum for n = 0 is the empty product, so is 1.)
Alternatively, this can be expressed as
Another series for the arctangent function is given by
where is the imaginary unit. [15]
Two alternatives to the power series for arctangent are these generalized continued fractions:
The second of these is valid in the cut complex plane. There are two cuts, from −i to the point at infinity, going down the imaginary axis, and from i to the point at infinity, going up the same axis. It works best for real numbers running from −1 to 1. The partial denominators are the odd natural numbers, and the partial numerators (after the first) are just (nz)2, with each perfect square appearing once. The first was developed by Leonhard Euler; the second by Carl Friedrich Gauss utilizing the Gaussian hypergeometric series.
For real and complex values of z:
For real x ≥ 1:
For all real x not between -1 and 1:
The absolute value is necessary to compensate for both negative and positive values of the arcsecant and arccosecant functions. The signum function is also necessary due to the absolute values in the derivatives of the two functions, which create two different solutions for positive and negative values of x. These can be further simplified using the logarithmic definitions of the inverse hyperbolic functions:
The absolute value in the argument of the arcosh function creates a negative half of its graph, making it identical to the signum logarithmic function shown above.
All of these antiderivatives can be derived using integration by parts and the simple derivative forms shown above.
Using (i.e. integration by parts), set
Then
which by the simple substitution yields the final result:
Since the inverse trigonometric functions are analytic functions, they can be extended from the real line to the complex plane. This results in functions with multiple sheets and branch points. One possible way of defining the extension is:
where the part of the imaginary axis which does not lie strictly between the branch points (−i and +i) is the branch cut between the principal sheet and other sheets. The path of the integral must not cross a branch cut. For z not on a branch cut, a straight line path from 0 to z is such a path. For z on a branch cut, the path must approach from Re[x] > 0 for the upper branch cut and from Re[x] < 0 for the lower branch cut.
The arcsine function may then be defined as:
where (the square-root function has its cut along the negative real axis and) the part of the real axis which does not lie strictly between −1 and +1 is the branch cut between the principal sheet of arcsin and other sheets;
which has the same cut as arcsin;
which has the same cut as arctan;
where the part of the real axis between −1 and +1 inclusive is the cut between the principal sheet of arcsec and other sheets;
which has the same cut as arcsec.
These functions may also be expressed using complex logarithms. This extends their domains to the complex plane in a natural fashion. The following identities for principal values of the functions hold everywhere that they are defined, even on their branch cuts.
Because all of the inverse trigonometric functions output an angle of a right triangle, they can be generalized by using Euler's formula to form a right triangle in the complex plane. Algebraically, this gives us:
or
where is the adjacent side, is the opposite side, and is the hypotenuse. From here, we can solve for .
or
Simply taking the imaginary part works for any real-valued and , but if or is complex-valued, we have to use the final equation so that the real part of the result isn't excluded. Since the length of the hypotenuse doesn't change the angle, ignoring the real part of also removes from the equation. In the final equation, we see that the angle of the triangle in the complex plane can be found by inputting the lengths of each side. By setting one of the three sides equal to 1 and one of the remaining sides equal to our input , we obtain a formula for one of the inverse trig functions, for a total of six equations. Because the inverse trig functions require only one input, we must put the final side of the triangle in terms of the other two using the Pythagorean Theorem relation
The table below shows the values of a, b, and c for each of the inverse trig functions and the equivalent expressions for that result from plugging the values into the equations above and simplifying.
The particular form of the simplified expression can cause the output to differ from the usual principal branch of each of the inverse trig functions. The formulations given will output the usual principal branch when using the and principal branch for every function except arccotangent in the column. Arccotangent in the column will output on its usual principal branch by using the and convention.
In this sense, all of the inverse trig functions can be thought of as specific cases of the complex-valued log function. Since these definition work for any complex-valued , the definitions allow for hyperbolic angles as outputs and can be used to further define the inverse hyperbolic functions. It's possible to algebraically prove these relations by starting with the exponential forms of the trigonometric functions and solving for the inverse function.
Using the exponential definition of sine, and letting
(the positive branch is chosen)
Inverse trigonometric functions are useful when trying to determine the remaining two angles of a right triangle when the lengths of the sides of the triangle are known. Recalling the right-triangle definitions of sine and cosine, it follows that
Often, the hypotenuse is unknown and would need to be calculated before using arcsine or arccosine using the Pythagorean Theorem: where is the length of the hypotenuse. Arctangent comes in handy in this situation, as the length of the hypotenuse is not needed.
For example, suppose a roof drops 8 feet as it runs out 20 feet. The roof makes an angle θ with the horizontal, where θ may be computed as follows:
The two-argument atan2 function computes the arctangent of y / x given y and x, but with a range of (−π, π]. In other words, atan2(y, x) is the angle between the positive x-axis of a plane and the point (x, y) on it, with positive sign for counter-clockwise angles (upper half-plane, y > 0), and negative sign for clockwise angles (lower half-plane, y < 0). It was first introduced in many computer programming languages, but it is now also common in other fields of science and engineering.
In terms of the standard arctan function, that is with range of (−π/2, π/2), it can be expressed as follows:
It also equals the principal value of the argument of the complex number x + iy.
This limited version of the function above may also be defined using the tangent half-angle formulae as follows:
provided that either x > 0 or y ≠ 0. However this fails if given x ≤ 0 and y = 0 so the expression is unsuitable for computational use.
The above argument order (y, x) seems to be the most common, and in particular is used in ISO standards such as the C programming language, but a few authors may use the opposite convention (x, y) so some caution is warranted. These variations are detailed at atan2.
In many applications [16] the solution of the equation is to come as close as possible to a given value . The adequate solution is produced by the parameter modified arctangent function
The function rounds to the nearest integer.
For angles near 0 and π, arccosine is ill-conditioned, and similarly with arcsine for angles near −π/2 and π/2. Computer applications thus need to consider the stability of inputs to these functions and the sensitivity of their calculations, or use alternate methods. [17]
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic regarding the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.
Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive.
In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by
In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees.
In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.
The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.
Landen's transformation is a mapping of the parameters of an elliptic integral, useful for the efficient numerical evaluation of elliptic functions. It was originally due to John Landen and independently rediscovered by Carl Friedrich Gauss.
In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities,
[…] α = arcsin m: It is frequently read "arc-sine m" or "anti-sine m," since two mutually inverse functions are said each to be the anti-function of the other. […] A similar symbolic relation holds for the other trigonometric functions. […] This notation is universally used in Europe and is fast gaining ground in this country. A less desirable symbol, α = sin-1m, is still found in English and American texts. The notation α = inv sin m is perhaps better still on account of its general applicability. […]
{{cite book}}
: CS1 maint: DOI inactive as of November 2024 (link) However, the term "arcus function" can also refer to the function giving the argument of a complex number, sometimes called the arcus.