Outline of trigonometry

Last updated

The following outline is provided as an overview of and topical guide to trigonometry:

Contents

Trigonometry branch of mathematics that studies the relationships between the sides and the angles in triangles. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves.

Basics

[?], the angle symbol in Unicode is U+2220 Angle Symbol.svg
∠, the angle symbol in Unicode is U+2220

Content of trigonometry

Scholars

History

Fields

Uses of trigonometry

Physics

Astronomy

Chemistry

Geography, geodesy, and land surveying

Engineering

Analog devices

Calculus

Other areas of mathematics

Geometric foundations

Trigonometric functions

Trigonometric identities

Trigonometric identity (list)

Solution of triangles

Solution of triangles

More advanced trigonometric concepts and methods

Numerical mathematics

Trigonometric tables

Trigonometric tables

Spherical trigonometry

Spherical trigonometry

Mnemonics

mnemonics in trigonometry

Lists

See also

Related Research Articles

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Trigonometric tables</span> Overview about trigonometric tables

In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.

<span class="mw-page-title-main">Aryabhata</span> Indian mathematician-astronomer

Aryabhata or Aryabhata I was the first of the major mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His works include the Āryabhaṭīya and the Arya-siddhanta.

<span class="mw-page-title-main">Chord (geometry)</span> Geometric line segment whose endpoints both lie on the curve

A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta.

<span class="mw-page-title-main">Versine</span> 1 minus the cosine of an angle

The versine or versed sine is a trigonometric function found in some of the earliest trigonometric tables. The versine of an angle is 1 minus its cosine.

Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics, important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometry was further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics.

<span class="mw-page-title-main">Cofunction</span>

In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles (pairs that sum to one right angle). This definition typically applies to trigonometric functions. The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620).

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

<span class="mw-page-title-main">History of trigonometry</span>

Early study of triangles can be traced to the 2nd millennium BC, in Egyptian mathematics and Babylonian mathematics. Trigonometry was also prevalent in Kushite mathematics. Systematic study of trigonometric functions began in Hellenistic mathematics, reaching India as part of Hellenistic astronomy. In Indian astronomy, the study of trigonometric functions flourished in the Gupta period, especially due to Aryabhata, who discovered the sine function. During the Middle Ages, the study of trigonometry continued in Islamic mathematics, by mathematicians such as Al-Khwarizmi and Abu al-Wafa. It became an independent discipline in the Islamic world, where all six trigonometric functions were known. Translations of Arabic and Greek texts led to trigonometry being adopted as a subject in the Latin West beginning in the Renaissance with Regiomontanus. The development of modern trigonometry shifted during the western Age of Enlightenment, beginning with 17th-century mathematics and reaching its modern form with Leonhard Euler (1748).

<span class="mw-page-title-main">Trigonometry</span> Area of geometry, about angles and lengths

Trigonometry is a branch of mathematics concerned with relationships between angles and ratios of lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios such as sine.

The following is a timeline of key developments of geometry:

This is a timeline of pure and applied mathematics history. It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic" stage, in which comprehensive notational systems for formulas are the norm.

<span class="mw-page-title-main">Āryabhaṭa's sine table</span> First sine table ever constructed

Āryabhata's sine table is a set of twenty-four numbers given in the astronomical treatise Āryabhatiya composed by the fifth century Indian mathematician and astronomer Āryabhata, for the computation of the half-chords of a certain set of arcs of a circle. The set of numbers appears in verse 12 in Chapter 1 Dasagitika of Aryabhatiya. It is not a table in the modern sense of a mathematical table; that is, it is not a set of numbers arranged into rows and columns. Āryabhaṭa's table is also not a set of values of the trigonometric sine function in a conventional sense; it is a table of the first differences of the values of trigonometric sines expressed in arcminutes, and because of this the table is also referred to as Āryabhaṭa's table of sine-differences.

In mathematics, Bhāskara I's sine approximation formula is a rational expression in one variable for the computation of the approximate values of the trigonometric sines discovered by Bhāskara I, a seventh-century Indian mathematician. This formula is given in his treatise titled Mahabhaskariya. It is not known how Bhāskara I arrived at his approximation formula. However, several historians of mathematics have put forward different hypotheses as to the method Bhāskara might have used to arrive at his formula. The formula is elegant and simple, and it enables the computation of reasonably accurate values of trigonometric sines without the use of geometry.

<span class="mw-page-title-main">Unit circle</span> Circle with radius of one

In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as S1 because it is a one-dimensional unit n-sphere.

In trigonometry, it is common to use mnemonics to help remember trigonometric identities and the relationships between the various trigonometric functions.