Solution of triangles

Last updated

Solution of triangles (Latin : solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

Contents

Solving plane triangles

Standard notation for a triangle Triangle - angles, vertices, sides.svg
Standard notation for a triangle

A general form triangle has six main characteristics (see picture): three linear (side lengths a, b, c) and three angular (α, β, γ). The classical plane trigonometry problem is to specify three of the six characteristics and determine the other three. A triangle can be uniquely determined in this sense when given any of the following: [1] [2]

For all cases in the plane, at least one of the side lengths must be specified. If only the angles are given, the side lengths cannot be determined, because any similar triangle is a solution.

Trigonomic relations

Overview of particular steps and tools used when solving plane triangles Beliebiges Dreieck cen.png
Overview of particular steps and tools used when solving plane triangles

The standard method of solving the problem is to use fundamental relations.

Law of cosines
Law of sines
Sum of angles
Law of tangents

There are other (sometimes practically useful) universal relations: the law of cotangents and Mollweide's formula.

Notes

  1. To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5, the angle β can equal either 30° or 150°. Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously determines its angle. On the other hand, if the angle is small (or close to 180°), then it is more robust numerically to determine it from its sine than its cosine because the arc-cosine function has a divergent derivative at 1 (or −1).
  2. We assume that the relative position of specified characteristics is known. If not, the mirror reflection of the triangle will also be a solution. For example, three side lengths uniquely define either a triangle or its reflection.

Three sides given (SSS)

Three sides given Resolve triangle with a b c.png
Three sides given

Let three side lengths a, b, c be specified. To find the angles α, β, the law of cosines can be used: [3]

Then angle γ = 180° − αβ.

Some sources recommend to find angle β from the law of sines but (as Note 1 above states) there is a risk of confusing an acute angle value with an obtuse one.

Another method of calculating the angles from known sides is to apply the law of cotangents.

Area using Heron's formula: where

Heron's formula without using the semiperimeter:

Two sides and the included angle given (SAS)

Two sides and the included angle given Resolve triangle with a b gamma.png
Two sides and the included angle given

Here the lengths of sides a, b and the angle γ between these sides are known. The third side can be determined from the law of cosines: [4] Now we use law of cosines to find the second angle: Finally, β = 180° − αγ.

Two sides and non-included angle given (SSA)

Two sides and a non-included angle given Resolve triangle with b c beta.png
Two sides and a non-included angle given
Two solutions for the triangle Resolve triangle with b c beta 2 solutions.png
Two solutions for the triangle

This case is not solvable in all cases; a solution is guaranteed to be unique only if the side length adjacent to the angle is shorter than the other side length. Assume that two sides b, c and the angle β are known. The equation for the angle γ can be implied from the law of sines: [5] We denote further D = c/b sin β (the equation's right side). There are four possible cases:

  1. If D > 1, no such triangle exists because the side b does not reach line BC. For the same reason a solution does not exist if the angle β ≥ 90° and bc.
  2. If D = 1, a unique solution exists: γ = 90°, i.e., the triangle is right-angled.
  3. If D < 1 two alternatives are possible.
    1. If bc, then βγ (the larger side corresponds to a larger angle). Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique.
    2. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ = 180° − γ. The figure on right shows the point C, the side b and the angle γ as the first solution, and the point C, side b and the angle γ as the second solution.

Once γ is obtained, the third angle α = 180° − βγ.

The third side can then be found from the law of sines:

or from the law of cosines:

A side and two adjacent angles given (ASA)

One side and two adjacent angles given Resolve triangle with c alpha beta.png
One side and two adjacent angles given

The known characteristics are the side c and the angles α, β. The third angle γ = 180° − αβ.

Two unknown sides can be calculated from the law of sines: [6]

A side, one adjacent angle and the opposite angle given (AAS)

The procedure for solving an AAS triangle is same as that for an ASA triangle: First, find the third angle by using the angle sum property of a triangle, then find the other two sides using the law of sines.

Other given lengths

In many cases, triangles can be solved given three pieces of information some of which are the lengths of the triangle's medians, altitudes, or angle bisectors. Posamentier and Lehmann [7] list the results for the question of solvability using no higher than square roots (i.e., constructibility) for each of the 95 distinct cases; 63 of these are constructible.

Solving spherical triangles

Spherical triangle Spherical triangle 3d.png
Spherical triangle

The general spherical triangle is fully determined by three of its six characteristics (3 sides and 3 angles). The lengths of the sides a, b, c of a spherical triangle are their central angles, measured in angular units rather than linear units. (On a unit sphere, the angle (in radians) and length around the sphere are numerically the same. On other spheres, the angle (in radians) is equal to the length around the sphere divided by the radius.)

Spherical geometry differs from planar Euclidean geometry, so the solution of spherical triangles is built on different rules. For example, the sum of the three angles α + β + γ depends on the size of the triangle. In addition, similar triangles cannot be unequal, so the problem of constructing a triangle with specified three angles has a unique solution. The basic relations used to solve a problem are similar to those of the planar case: see Spherical law of cosines and Spherical law of sines.

Among other relationships that may be useful are the half-side formula and Napier's analogies: [8]

Three sides given Solve spherical triangle with a b c.png
Three sides given

Three sides given (spherical SSS)

Known: the sides a, b, c (in angular units). The triangle's angles are computed using the spherical law of cosines:

Two sides and the included angle given Solve spherical triangle with a b gamma.png
Two sides and the included angle given

Two sides and the included angle given (spherical SAS)

Known: the sides a, b and the angle γ between them. The side c can be found from the spherical law of cosines:

The angles α, β can be calculated as above, or by using Napier's analogies:

This problem arises in the navigation problem of finding the great circle between two points on the earth specified by their latitude and longitude; in this application, it is important to use formulas which are not susceptible to round-off errors. For this purpose, the following formulas (which may be derived using vector algebra) can be used: where the signs of the numerators and denominators in these expressions should be used to determine the quadrant of the arctangent.

Two sides and a non-included angle given Solve spherical triangle with b c beta.png
Two sides and a non-included angle given

Two sides and non-included angle given (spherical SSA)

This problem is not solvable in all cases; a solution is guaranteed to be unique only if the side length adjacent to the angle is shorter than the other side length. Known: the sides b, c and the angle β not between them. A solution exists if the following condition holds: The angle γ can be found from the spherical law of sines: As for the plane case, if b < c then there are two solutions: γ and 180° - γ.

We can find other characteristics by using Napier's analogies:

One side and two adjacent angles given Solve spherical triangle with c alpha beta.png
One side and two adjacent angles given

A side and two adjacent angles given (spherical ASA)

Known: the side c and the angles α, β. First we determine the angle γ using the spherical law of cosines:

We can find the two unknown sides from the spherical law of cosines (using the calculated angle γ):

or by using Napier's analogies:

One side, one adjacent angle and the opposite angle given Solve spherical triangle with a alpha beta.png
One side, one adjacent angle and the opposite angle given

A side, one adjacent angle and the opposite angle given (spherical AAS)

Known: the side a and the angles α, β. The side b can be found from the spherical law of sines:

If the angle for the side a is acute and α > β, another solution exists:

We can find other characteristics by using Napier's analogies:

Three angles given Solve spherical triangle with alpha beta gamma.png
Three angles given

Three angles given (spherical AAA)

Known: the angles α, β, γ. From the spherical law of cosines we infer:

Solving right-angled spherical triangles

The above algorithms become much simpler if one of the angles of a triangle (for example, the angle C) is the right angle. Such a spherical triangle is fully defined by its two elements, and the other three can be calculated using Napier's Pentagon or the following relations.

(from the spherical law of sines)
(from the spherical law of cosines)
(also from the spherical law of cosines)

Some applications

Triangulation

Distance measurement by triangulation Distance by triangulation.svg
Distance measurement by triangulation

If one wants to measure the distance d from shore to a remote ship via triangulation, one marks on the shore two points with known distance l between them (the baseline). Let α, β be the angles between the baseline and the direction to the ship.

From the formulae above (ASA case, assuming planar geometry) one can compute the distance as the triangle height:

For the spherical case, one can first compute the length of side from the point at α to the ship (i.e. the side opposite to β) via the ASA formula and insert this into the AAS formula for the right subtriangle that contains the angle α and the sides b and d: (The planar formula is actually the first term of the Taylor expansion of d of the spherical solution in powers of .)

This method is used in cabotage. The angles α, β are defined by observation of familiar landmarks from the ship.

How to measure a mountain's height Mountain height by triangulation.svg
How to measure a mountain's height

As another example, if one wants to measure the height h of a mountain or a high building, the angles α, β from two ground points to the top are specified. Let be the distance between these points. From the same ASA case formulas we obtain:

The distance between two points on the globe

Distance on earth.png

To calculate the distance between two points on the globe,

Point A: latitude λA, longitude LA, and
Point B: latitude λB, longitude LB

we consider the spherical triangle ABC, where C is the North Pole. Some characteristics are: If two sides and the included angle given, we obtain from the formulas Here R is the Earth's radius.

See also

Related Research Articles

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles, while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data and the technique gives two possible values for the enclosed angle.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Heron's formula</span> Triangle area in terms of side lengths

In geometry, Heron's formula gives the area of a triangle in terms of the three side lengths Letting be the semiperimeter of the triangle, the area is

<span class="mw-page-title-main">Law of tangents</span> Relates tangents of two angles of a triangle and the lengths of the opposing sides

In trigonometry, the law of tangents or tangent rule is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Spherical trigonometry</span> Geometry of figures on the surface of a sphere

Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle.

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

<span class="mw-page-title-main">Bretschneider's formula</span> Formula for the area of a quadrilateral

In geometry, Bretschneider's formula is a mathematical expression for the area of a general quadrilateral. It works on both convex and concave quadrilaterals, whether it is cyclic or not.

There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

<span class="mw-page-title-main">Differentiation of trigonometric functions</span> Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

<span class="mw-page-title-main">Law of cosines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and , the law of cosines states:

<span class="mw-page-title-main">Equilateral pentagon</span>

In geometry, an equilateral pentagon is a polygon in the Euclidean plane with five sides of equal length. Its five vertex angles can take a range of sets of values, thus permitting it to form a family of pentagons. In contrast, the regular pentagon is unique, because it is equilateral and moreover it is equiangular.

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.

<span class="mw-page-title-main">Mollweide's formula</span> Relation between sides and angles of a triangle

In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle.

<span class="mw-page-title-main">Snellius–Pothenot problem</span> Problem in trigonometry

In trigonometry, the Snellius–Pothenot problem is a problem first described in the context of planar surveying. Given three known points A, B, C, an observer at an unknown point P observes that the line segment AC subtends an angle α and the segment CB subtends an angle β; the problem is to determine the position of the point P..

<span class="mw-page-title-main">Hansen's problem</span> Fundamental topographical problem

In trigonometry, Hansen's problem is a problem in planar surveying, named after the astronomer Peter Andreas Hansen (1795–1874), who worked on the geodetic survey of Denmark. There are two known points A, B, and two unknown points P1, P2. From P1 and P2 an observer measures the angles made by the lines of sight to each of the other three points. The problem is to find the positions of P1 and P2. See figure; the angles measured are (α1, β1, α2, β2).

<span class="mw-page-title-main">Law of cotangents</span> Trigonometric identity relating the sides and angles of a triangle

In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles.

References

  1. "Solving Triangles". Maths is Fun. Retrieved 4 April 2012.
  2. "Solving Triangles". web.horacemann.org. Archived from the original on 7 January 2014. Retrieved 4 April 2012.
  3. "Solving SSS Triangles". Maths is Fun. Retrieved 13 January 2015.
  4. "Solving SAS Triangles". Maths is Fun. Retrieved 13 January 2015.
  5. "Solving SSA Triangles". Maths is Fun. Retrieved 9 March 2013.
  6. "Solving ASA Triangles". Maths is Fun. Retrieved 13 January 2015.
  7. Alfred S. Posamentier and Ingmar Lehmann, The Secrets of Triangles , Prometheus Books, 2012: pp. 201–203.
  8. Napier's Analogies at MathWorld