Spherical law of cosines

Last updated

In spherical trigonometry, the law of cosines (also called the cosine rule for sides [1] ) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry.

Contents

Spherical triangle solved by the law of cosines. Law-of-haversines.svg
Spherical triangle solved by the law of cosines.

Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v), b (from u to w), and c (from v to w), and the angle of the corner opposite c is C, then the (first) spherical law of cosines states: [2] [1]

Since this is a unit sphere, the lengths a, b, and c are simply equal to the angles (in radians) subtended by those sides from the center of the sphere. (For a non-unit sphere, the lengths are the subtended angles times the radius, and the formula still holds if a, b and c are reinterpreted as the subtended angles). As a special case, for C = π/2, then cos C = 0, and one obtains the spherical analogue of the Pythagorean theorem:

If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3]

A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1] ) states:

where A and B are the angles of the corners opposite to sides a and b, respectively. It can be obtained from consideration of a spherical triangle dual to the given one.

Proofs

First proof

Let u, v, and w denote the unit vectors from the center of the sphere to those corners of the triangle. The angles and distances do not change if the coordinate system is rotated, so we can rotate the coordinate system so that is at the north pole and is somewhere on the prime meridian (longitude of 0). With this rotation, the spherical coordinates for are where θ is the angle measured from the north pole not from the equator, and the spherical coordinates for are The Cartesian coordinates for are and the Cartesian coordinates for are The value of is the dot product of the two Cartesian vectors, which is

Second proof

Let u, v, and w denote the unit vectors from the center of the sphere to those corners of the triangle. We have u · u = 1, v · w = cos c, u · v = cos a, and u · w = cos b. The vectors u × v and u × w have lengths sin a and sin b respectively and the angle between them is C, so

using cross products, dot products, and the Binet–Cauchy identity

Third proof

The following proof relies on the concept of quaternions and is based on a proof given in Brand: [5] Let u, v, and w denote the unit vectors from the center of the unit sphere to those corners of the triangle. We define the quaternion u = (0, u) = 0 + uxi + uyj + uzk. The quaternion u is used to represent a rotation by 180° around the axis indicated by the vector u. We note that using u as the axis of rotation gives the same result, and that the rotation is its own inverse. We also define v = (0, v) and w = (0, w).

We compute the product of quaternions, which also gives the composition of the corresponding rotations:

q = vu−1 = (v)(−u) = (−(v · −u), v × −u) = (u · v, u × v) = (cos a, w′ sin a)

where (f, g) represents the real and imaginary parts of a quaternion, a is the angle between u and v, and w′ = (u × v) / |u × v| is the axis of the rotation that moves u to v along a great circle. Similarly we define:

r = wv−1 = (v · w, v × w) = (cos b, u′ sin b).
s = uw−1 = (w · u, w × u) = (cos c, v′ sin c)

The quaternions q, r, and s are used to represent rotations with axes of rotation w, u, and v, respectively, and angles of rotation 2a, 2b, and 2c, respectively. Because these are double angles, each of q, r, and s represents two applications of the rotation implied by an edge of the spherical triangle.

From the definitions, it follows that

srq = uw−1wv−1vu−1 = 1,

which tells us that the composition of these rotations is the identity transformation. In particular, rq = s−1 gives us

(cos b, u′ sin b) (cos a, w′ sin a) = (cos c, −v′ sin c).

Expanding the left-hand side, we obtain

Equating the scalar parts on both sides of the identity, we obtain

Because u is parallel to v × w, w is parallel to u × v = −v × u, and C is the angle between v × w and v × u, it follows that . Thus,

Rearrangements

The first and second spherical laws of cosines can be rearranged to put the sides (a, b, c) and angles (A, B, C) on opposite sides of the equations:

Planar limit: small angles

For small spherical triangles, i.e. for small a, b, and c, the spherical law of cosines is approximately the same as the ordinary planar law of cosines,

To prove this, we will use the small-angle approximation obtained from the Maclaurin series for the cosine and sine functions:

Substituting these expressions into the spherical law of cosines nets:

or after simplifying:

The big O terms for a and b are dominated by O(a4) + O(b4) as a and b get small, so we can write this last expression as:

History

Something equivalent to the spherical law of cosines was used (but not stated in general) by al-Khwārizmī (9th century), al-Battānī (9th century), and Nīlakaṇṭha (15th century). [6]

See also

Notes

  1. 1 2 3 W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, The VNR Concise Encyclopedia of Mathematics, 2nd ed., ch. 12 (Van Nostrand Reinhold: New York, 1989).
  2. Romuald Ireneus 'Scibor-Marchocki, Spherical trigonometry, Elementary-Geometry Trigonometry web page (1997).
  3. R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope 68 (2), 159 (1984).
  4. Reiman, István (1999). Geometria és határterületei. Szalay Könyvkiadó és Kereskedőház Kft. p. 83.
  5. Brand, Louis (1947). "§186 Great Circle Arccs". Vector and Tensor Analysis. Wiley. pp. 416–417.
  6. Van Brummelen, Glen (2012). Heavenly mathematics: The forgotten art of spherical trigonometry. Princeton University Press. p. 98. Bibcode:2012hmfa.book.....V.

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles, while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data and the technique gives two possible values for the enclosed angle.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

<span class="mw-page-title-main">Great-circle distance</span> Shortest distance between two points on the surface of a sphere

The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere.

<span class="mw-page-title-main">Haversine formula</span> Formula for the great-circle distance between two points on a sphere

The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.

<span class="mw-page-title-main">Spherical trigonometry</span> Geometry of figures on the surface of a sphere

Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

<span class="mw-page-title-main">Euler's rotation theorem</span> Movement with a fixed point is rotation

In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two rotations is also a rotation. Therefore the set of rotations has a group structure, known as a rotation group.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere. When the rays are lines of sight from an observer to two points in space, it is known as the apparent distance or apparent separation.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

<span class="mw-page-title-main">Dual quaternion</span> Eight-dimensional algebra over the real numbers

In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.

Solution of triangles is the main trigonometric problem of finding the characteristics of a triangle, when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.